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Preface

The purpose of this study was to apply adaptive filter signal processing tech-
niques to the processing of visually evoked fields and visually evoked potentials which
are signals generated by the human brain. The signal-to-noise ratio of these signals
is extremely low due to the presence of strong background noise. Through the use
of a time sequenced adaptive filter, an estima' 2 of the evoked fields was generated
using the evoked potentials. While the materiz! presented does not require any spe-
cial background, a general knowledge of digita! signa® rrocessing and adaptive filter

techniques is useful.

As a student looking for the reasons why, I want to thank my advisor Dr Robert
Williams. His patience, advice, and insight were greatly needed and appreciatc.ad. {
would also like to thank those on the thesis committee; Lt Col D. Meer, Lt Col D.
Norman, and Dr M. Kabrisky.

[ am most indebted and thankful to my best friend and wife, Kristi. Her
support and encouragement made this all possible. Also, a warm thanks to my two
wonderful boys, Joshua and Jacob. Their smiles, laughter, and hugs kept the “dad”
in me alive. Finally, a prayer of thanksgiving to the Heavenly Father for his blessings

and support.
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time sequenced adaptive filter ig, developed to estimate visually evoked fields

(EF) using visually evoked potentials (EP). These non-stationary signals are buried
in strong background noise. The two types of noise are magnetoencephalogram
(MEG) and electroencephalogram (EEG). The filter implementation is based on
‘ the Ferrara Time Sequenced Adaptive Filter (TSAF) using the Least-Mean-Square
(LMS) algorithm and the Williams modified P-vector algorithm (mPa). This essen-
tially results in two ﬁltersﬁe\ﬁﬁ;;}iﬂﬂé ~‘fI".S;AFmpa res;ectivelyrbA two
stage filter structure is used in which the first stage removes the time-varying mean
of the input signals. This allows the second stage to process zero-mean signals which

increases the convergence speed of the filter.
P \fjb
The theory for the LS#: [~ PSAFqmp; filters is overviewed with the

input signals to the filters modelled as the sum of three uncorrelated components:
average signal response, signal jitter, and noise. The signal model is verified based
on a statistical analysis of simulated EP data files. The software implementation is
then shown to be error free: Using simulated EF and EP signals buried in correlated
noise, the TSAF,,p, is shown to out perform the T'SAFps for the specific case
presented. The TSAF,,p, is u‘\nique in that the filter uses an estimate of the cross
correlation statistics of the pré—stimulus noise in the filter update equation. This
allows the TSAF,,p4 to remove \‘t,;he biasing affects of cross correlated noise which the
TSAFpms can not do. The nois}=< statistics, contained in the P, vector, are assumed

to be time-invariant which is a fundamental assumption used in this research.

Prior to filtering human dat\a files, a statistical analysis performed on human
pre-stimulus noise reveals correlation between the MEG and EEG noise components
for the specific data files used. The human data is then filtered using the TSAFLms
and TSAF,,p, followed by a comparison of the output signals.

)
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ESTIMATION OF EVOKED FIELDS US™ tx
TIME-SEQUENCED ADAPTIVE FILTER WI1
THE MODIFIED P-VECTOR ALGORITHM

L. Introduction

1.1 Background

The human brain generates two signals in response to visual and/or auditory
stimuli, the electrical evoked potential (EP) and the magnetic evoked field (EF).
These signals are difficult to measure as they consist of weak signals buried in strong
background noise. The two types of background noise are electroencephalogram
(EEG) and magnetoencephalogram (MEG) (15:5). In addition to the low signal to
noise ratio (SNR), the EP and EF signals are nonstationary or time-varying such

that classic Wiener filters are inadequate for processing these signals (13:1).

The EF and EP signals are used to locate the source of the response(s) to stim-
uli in the humun brain. Location of the source is considered to be the most important
piece of information in biomagnetic research because the location helps researchers
understand how the brain processes information (8:9-10). The Armstrong Aerospace
Medical Research Laboratory (AAMRL) conducts research in the application of EP
and EF to source location as it applies to pilot work load assessment and developing
techniques for optimally integrating pilot and cockpit environments. One proposed
approach for assessing the suitability of cockpit designs is to quantify the brain re-
sponse of pilots to various workload scenarios for different cockpit configurations.
Quantifying the brain’s response requires access to the information component of

measured electro-magnetic brain responses which is then used to localize the re-

sponse region. AAMRL collects EF and EP signals from human subjects as part of




this on going ctudy and desires to recover the human EF signals from low SNR data
signals collected to date. The problem encountered is the nonstationarity and low
SNR. of the EF and EP signals. While this thesis is directed towards processing EF
signals, the literature on the signal processing of EF is limited compared to that on
the EP signal. Therefore, the reader is now presented a brief history of EP signal
processing keeping in mind that both EP and EF are nonstationary and corrupted

with strong background noise.

In the past, ensemble averaging has been used to enhance the SNR of the EP
signal. The major drawback to this is that some of the important information content
of the signal is averaged out in the process (15:32). Westerkamp pointed out that
Wiener filters were used to process EP will little or no improvement over averaging.
This is attributed to the nonstationarity of the EP signal and the fact that Wiener
based filters, in general, require a priori knowledge of the signal statistics which are
assumed stationary (9:13). Use of adaptive filters has also been attempted with re-
sults similar to those cbtained from using Wiener filters. Although a prior knowledge
of the signal statistics is not required, the adaptive filter will converge to an approx-
imation of the Wiener solution which assumes stationary signal statistics (13:5). It
has been shown that the Least-Mean-Square (LMS) adaptive filter can track signals
with slowly changing statistics by increasing the adaptation gain. The trade off is
that increasing the gain adds adaptation noise to the solution (11) (12:34). Given
the similarity of the EF and EP signals, one can expect similar results from process-
ing EF signals. With an obvious need for a filter which can process nonstationary

signals, Ferrara developed the Time Sequenced Adaptive Filter (TSAF) (2).

The Ferrara TSAF is an extension of the LMS filter and is designed to process
a certain class of nonstationary signals which have statistics that repeat in {ime
or are cyclostationary (2:22). The TSAF requires two input signals as does the
LMS filter and thus requires two separate sensors to collect the signals. Researchers

have suggested that the EF and EP signals contain correlated information which

1-2
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possibly makes the EFF and EP signals good candidates for the TSAF (8:16-17) (15).
Going a step further, one might desire to use only one sensor and still process the
nonstationary signal adaptively. This is the idea behind the Williams modified P-
Vector algorithm (mPa) which essentially estimates the statistics of the pre-stimulus
noise and then removes the estimate from the weight update. This assumes the noise
has stationary statistics with the input signal allowed to be nonstationary. The mPa
requires “pre-stimulus” data which is the ongoing background noise collected before
the stimulus is applied (12:94-97). Two filter implementations are investigated in
this thesis. The TSAT using the LMS algorithm and the TSAF using the Williams
mPa. These are denoted as the TSAFprps and TSAF,,p, respectively.

1.2 Problem Statement

The objective of this thesis is to estimate EF signals using EP signals in a
direct application of the Ferrara TSAF and estimate EF signals by incorporating
the Williams Modified P-Vector Algorithm into the TSAF.

1.3 Approach

The plan of attack for this thesis includes a literature search, a statistical
analysis of simulated EP signals, a TSAFpys and T'SAF,,p, filter implementation,
testing of the software, and an estimation of human EF signals. The following is a

brief overivew of the remaining chapters:

o Chapter II. This chapter presents the necessary background information to
understand the source, model, and statistical characteristics of the EP and EF
signals. In addilion, the theory behind the TSAFps and TSAF,,p, filters is

overviewed.

o Chapter III. This chapter discusses the TSAFps and TSAF,,p, filter im-

plementations in software and presents the test that were used to verify the




integrity of the filters. This chapter also develops the concept of using EP to es-
timate EF by testing both the 'S AFyps and TS Ay, p, filters with simulated
EP and simulated EF signals.

e Chapter IV. With the software implementation verified, this chapter presents

the results from estimating human EF using three different filter configurations.

1. Two Sensor TSAFps-
2. Two Sensor T'SAF,p,.

3. Single Sensor TSAF,pa.

o Chapter V. This chapter presents the conclusions from this research effort and

recommendations for future research.

1.4 FExpected Results

The direct results from this thesis include a working TSAFras and TSAFppa
program and a report on the results from using the filters on the human EF and
human EP signals. Other expected results which are presented in Chapter 3 include

the following;:

o Test data which verifies that the TSAFpms and TSAF,,p, programs are es-

sentially error free.
e Statistical characteristics of the human EEG and MEG noise.

o Comparison of the TSAFpys and TS AF,,p, performance in terms of the mean-

square error.

1.5 Hardware Requirements

The implementation of the adaptive filter requires an AT style personal com-
puter with a 512K Ram Disk, 640K of base memory, and a single floppy drive. No

additional hardware is required.




1.6 Software Requirements

The filter program required Borland Turbo Pascal 5.0 compiler, editor and
debugger. Statistical analysis required Mathcad and Borland Turbo Basic. The
Basic programs were used to read and write unformatted data files and perform

some recursive calculations which are not easy to implement in Mathcad.
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II. Background

2.1 Introduction

The topic of this chapter is the application of adaptive filter signal processing
to estimating the magnetic evoked fields (EF) from the human brain using human
evoked potentials (EP). The topic is developed by presenting information obtained
from a literature search of the applicable material. In addition, a statistical analysis
is presented on simulated EP signals. The key terms associated with this topic are

biomagnetism, magnetic evoked field, adaptive filter, and time sequenced adaptive

filter (TSAF).

2.1.1 Definition of Key Terms. Biomagnetismis a broad area of research that
deals with the collection and analysis of signals emanated by the human body. EF
and EP signals are a category of nonstationary biomagnetic signals that are produced
by the brain in response to visual an ,'or auditory stimuli (15:32). Adaptive filters
are a class of filters which are self adjusting in response to their input signals . In
general, the adaptive filters adjust to optimize some performance criteria (10:5). The
TSAF is an extension of the broad category of adaptive filters that is considered for
use with the EF signal (2:22). These terms are discussed further in the following

sections.

2.1.2 Scope of the Research Topic and Data Base. The area of biomagnetis;n
is fairly well documented and is a significant area of ongoing research. The scope of
the literature search for this thesis will be limited to EF and EP signals generated by
visual stimuli. This will reduce the general topic of biomagnetism to a manageable
area. The data base of information is contained in conference reports, technical

journals, and text books.
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Adaptive filters are widely used for signal processing and control systems. A
significant amount of literature is available on adaptive filters. However, the filter of
interest for this paper is a closed-loop adaptive filter which uses the least-mean-square
(LMS) algorithm. Using the key words LMS and closed-loop adaptive filter greatly
reduces the broad topic of adaptive filters. The main source of information for the
LMS adaptive filter is text books and technical journals. The source for the TSAF
is limited to class lectures, technical articles, and Ferrara’s PhD dissertation (2) (3)

(12).

2.1.83 Method of Treatment and Organization. The following sections address
the EF and EP signals first, followed by a short discussion of adaptive filter theory.
The EF and EP literature will be overviewed to introduce the source and source
model of the EF and EP signals. In addition, a brief description of how the signals
are collected is presenied as well. This is followed by an analysis of the statistical
characteristics of simulated EP signals. The section on the adaptive filter will high-
light major points and results of classical LMS adaptive filter theory. The theory
presented on the LMS adaptive filter will then be incorporated into the discussion

of the Ferrara TSAT and the Williams modified P-vector algorithm (mPa).
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2.2 Definition and Analysis of the EF and EP Signals

The purpose of this section is to describe how the EF and EP signals are
generated, modeled for analysis, and collected by AAMRL. This is followed by a

discussion on the statistical characteristics of simulated EP signals.

2.2.1 Source and Model of the EF and EP Signals. The EF and EP signals
are generated from the brain in response to visual and/or auditory stimuli. This
thesis is only concerned with the generation due to visual stimuli. When a nerve cell
is stimulated beyond some threshold, the ionic equilibrium of the cell is changed.
This change in the ionic state of the nerve cell generates an electric current which
propagates along the nerve to connecting nerves or tissues (14:143). For the eye, the
propagation path is along the optical nerve to the visual cortex (14:360). In order to
study and analyze this phenomena, the process is modeled as a simple dipole with

the nerve path as a thin wire from which a magnetic field is generated (14:404-405).

It is generally known that a magnetic field is generated by the flow of current
along a wire and the magnetic field forms a circular pattern around the wire. In
addition, the direction of the magnetic field is determined by the direction the current
is traveling along the wire (14:20). Thus, the EF signal is the mzgnetic field generated
by the flow of current along the nerve path and provides information as to the
orientation and, more importantly, the location of the source (8:9-10). The EP
signal is also generated from the dipole model and is the potential produced from
the stimulus which drives the current. Given the source and the nature of the EF
and EP signals, it is obvious that the signals are of very low power and susceptible to

noise corrupt..n, therefore, the collection of these signals requires special equipment.

o

2.2.2 Signal Collection. AAMRL uses a Superconducting Quantum Interfer-
ence Device (SQUID) to collect the EF signals which is a non-invasive means of
recording magnetic fields generated by the brain. The SQUID uses a superconduct-

ing current loop which is extremely sensitive to changes in magnetic flux densities
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which are associated with the EF signal (15:8). The first reliable SQUID was intro-
duced in 1969 and since has been improved to allow measurements of brain activity
without special shielding to eliminate noise from overhead lighting or other sources
of urban noise (8:5). The EP signal is collected by electrodes attached to the subject

head which record the potential generated from the stimulus (15:25).

The data for this thesis was collected from a human subject who was looking
at a checkerboard pattern which was repeatedly stimulated by a burst of light. The
EF and EP data is time synchronized to the burst of light and is formatted into a
two column matrix and stored as an ASCII file on a floppy disk (15:18-20).

2.2.8 Statistical Analysis of Simulated EP Signals. This section provides a
statistical analysis of simulated EP data. The purpose is to determine specific statis-
tical characteristics of the signal which include the folluwing: stationarity, autocor-
relation, mean, and ensemble average. The analysis is based on the following signal

vector model:

X;=M;+Q;+N; (2.1)

M; is the average signal response or ensemble average vector at trial j, @, is the
deviation vector of the signal about the average response and is called the “jitter”,
and N, is the human pre-stimulus noise vector. This is the signal model originally
used by Williams and provides additional insight into the performance of the adaptive
filter in terms of signal bias and correlation of the individual signal components
(13:40). This will become evident in the development of the adaptive filter theory
which follows. Two data files were used for the analysis. The first is SDAT which
contains a time indexed signal composed of the average response signal and the jitter
vectors, M; and @; respectively. The second file called DDAT contains the SDAT
signal with human EEG noise, N;, added to the signal or M; 4+ @Q; + N;. Both data
files contained 100 vectors and each vector was composed of 50 discrete data points.

All the individual signal components were ext.acted and saved in separate ASCII
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files. The following sections discuss the analysis performed for M,, @,, and N, with

a definition of the statistical formulas provided in Appendix A.

2.2.8.1 Average Response Signail, M;. The first signal component ana-
lyzed was the M, vector which was obtained by ensemble averaging the SDAT data
file. Ensemble averaging effectively removes all the zero mean signal components,
including the jitter, f.. m the signal leaving the average response signal. M, is deter-
ministic which means it does not change with each data vector and the j subscript
could be dropped (M). Therefore, any variations in X from trial to trial are due to
the zero mean jitter and/or noise components. Figure 2.1 shows the plot of the en-
semble average of SDAT which produces the signal M,. The plot shows that the time
sequenced mean or ensemble average of X, is time varying and thus, by definition,

M; is nonstationary.

2.2.3.2 Signal Jitter, Q;. The signal jitter or Q; vector was obtained
by subtracting the M, vector from all 100 data vectors contained in SDAT or

Q; = SDAT; - M; (2.2)

The subscript on M, could be dropped as it is assumed to be the same for each data
vector. The first step was to determine what the @, component of the signal looked
like. Figure 2.2 shows three of the ) data vectors plotted as a function of the time
index k {compare with Figure 2.1). The signal varied significantly among each of
the separate data vectors as can be seen from the plot. However, the signal appears
to vary symmetrically aboat the time axis which would indicate @), has a zero mean
or E[gi] = 0. The mean was calculated and the result indicates that @, is zero mean
(see Figure 2.3). Next, using all 100 vectors, the time sequenced ensemble mean-
square or variance of @, was calculated and plotted as a function of the time index &

(Figure 2.4). It is obvious from the plot that the signal’s second order statistics are
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Figure 2.3. Time Sequenced Mean of Q;

time varying. In addition, the plot shows that the initial response appears to repeat
with a smaller amplitude at the end of the plot. In order to further characterize the
jitter, the autocorrelation of the signal was calculated. This was done using Turbo-
Basic, then the 50 point vector was imported to MathCad, a math software package.
The plot of the autocorrelation function is shown in Figure 2.5. As expected, the
function is even and has its maximum value at lag 7 = 0. In addition, one can

observe significant correlation extending to approximately 20 data points.
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2.2.8.83 Noise, N;. The noise component of the signal was obtained
simply by subtracting SDAT (M; + Q;) from DDAT (M; + Q; + N;) which left 100
data vectors of 50 sample points each. The noise component of the signal is generally
assumed to be zero mean with second order stationarity. To validate this assumption
the ensemble average of N; was calculated and is shown in Figure 2.6. Next, the
ensemble mean-square or variance of N; was calculated and plotted as a function
of k (Figure 2.7). There is only a slight amount of variation in the signal variance
estimate, thus validating the assumption that the signal’s second order statistics are

stationary. Thus, the noise component is wide sense stationary with zero mean.

2.2.8.4 Second Order Statistics of X;. As stated earlier, X; is the sum
of three separated components: signal, jitter, and noise. A quantity of interest is the

expected value of 22 which is the following:

Elz}) = El(mu + g +m)’]
= E[m} + q; +nf + 2muqi + 2k + 2mpn]
E{mi] + Elgi] + Elny]
+E2mqi) + E2gkni) + E[2myny] (2.3)

For the moment, assume the signal, jitter, and noise are uncorrelated which allows
the cross product terms to be separated into the product of their individual expected
values. Then, using the results from the previous sections that both Q; and N, have

zero mean, the equation simplifies to the following:
E[z}) = E[m3) + Elg}) + Elni] (2.4)

The assumption that the signal, jitter, and noise are uncorrelated is now ad-

dressed. If the signal components are uncorrelated, then the sum of the individual
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second order statistics will produce E[z%] which then implies the following:
Ez3) = (B[mi] + Elgi] + E[n}]) = 0 (2:5)

To verify that indeed the signal, jitter, and noise components are uncorrelated, the
difference in Equation 2.5 was formed from using the actual data vectors, then
squared, and plotted as a function of k (see Figure 2.8). The plot indicates that
there is a slight difference between the actual ensemble average of the signal and the
summation of the individual components. However, the difference is minimal and
the initial assumption that the individual components are uncorrelated is essentially

valid.

2.2.8.5 Frequency Analysis of M; and ¢;. In attempting to separate
the jitter and the signal, one might try to use classical digital filtering techniques
provided the frequency components did not overlap. However, a comparison of the

FFT for M, and Q, reveals that there is significant frequency overlap between the
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signals. Figure 2.10 is the FFT of autocorrelation of M, and Figure 2.11 is the FFT
of the autocorrelation of @,. Both data files were padded with zeros in order to
meet the length requirements of 2V where N = 7. Using a rectangular window,
the FFT was performed on the individual data arrays using MathCad. It was also
observed that M; contains more power in relation to @; and there was frequency

overlap of the two signals.

2.2.4 Summary. The EF is a magnetic field generated by the flow of ionic
current along a nerve path. The source of the EF signal is modeled as a dipole which

induces the flow of current along a thin wire. The signal is of very low power and is

coliected using a SQUID.

With the simulated EP signal modeled as shown in Equation 2.1, statistical
analysis revealed many interesting characteristics of the simulated data signal. First,
the average response signal, M;, is nonstationary. Second, @; has a zero mean
with nonstationary second order statistics and N, is wide sense stationary with zero
mean. Using the fact that @, and N, are zero mean and the signal components are

uncorrelated allowed Equation 2.3 to be simplified to
Elz}] = Blm}] + Elg] + Elnj) (2.6)

Finally, the frequency components of M, and @, were shown to overlap which would
not allow the use of filtering to separate the jitter and the response signal. The major
point to bring out is that the EP signal is nonstationary and can be modeled as the

sum of three uncorrelated components: the average response, jitter, and noise.
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2.3 The LMS Adaptive Filter

This section presents a brief introduction to the theory of adaptive filters fol-
lowed by a discussion of the Ferrara TSAF. The basic theory of the LMS adaptive
filter is a building block used in the discussion on the Ferrara TSAF.

2.8.1 Definition. In general, an adaptive filter is a self-adjusting and time
varying signal processor. The state of the filter is continually adjusted as a result
of the input signal(s) and in some cases the output signai {10:5-9). Figure 2.11
illustrates a closed-loop adaptive filter which is the type commonly used in signal
processing and is considered here. The input signal is z; and the desired signal is
dx. The error signal, €, is formed from the difference of the filter output, yx, and
the desired signal. The subscript k£ indicates the quantities are discrete values and
k is the time index. The characteristic of a closed-loop filter is that the error signal
is passed through some “Adaptive Algorithm” and then fed back to the processor
(10:5). For this chapter, the filter theory is based on a causal filter and the commonly

used least-mean-square (LMS) algorithm.

2.3.2 Onrcrview of the LMS Filter. The processor of the adaptive filter is
composed of a linear combiner and delay elements as shown in Figure 2.12 and is
generally referred to as an adaptive linear combiner (10:15). The time index is k, the
value of the zero weight at time k is wq, and the size of the filter is L + 1 assuming
a causal filter. The values of the weights are contained in the weight vector which is
defined as follows:

Wi, = [wor wak ... wr]” (2.7)

The weight vector gives the state of the filter at time k. The filter output signal,

Yk, will be the sum of all the delayed values of the input signal muitiplied by their
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2-15




corresponding weight or

L
Yy = Zwk-zwzk
1=0

= XIW, (2.8)

where X = [zx Ty ... 2 )T 10:17).

The final signal to define is the error signal. As stated earlier, the error signal

is the difference between the filter output and the desired signal or

€ = dp—yx

= dy - WIX; (2.9)

where the input signal is X}, the desired signal is di, and the weight vector is W.

The next step is to determine the value of W to optimize the performance of the

filter.

The optimum performance for the LMS adaptive filter is realized when the
mean squared error or [E[e?] is minimized. Ideally, the optimum performance is
achieved when E[eZ] = 0. However, this is seldom achievable in real applications
and sometimes not desirable as we will see in the next section. The goal now is to
determine how to express the performance of the filter mathematically and derive
an expression for the optimum weight vector, W*. Note that the k time subscript is
dropped which assumes a stationary solution. The statistic of interest is the expected

value of the squared error (the mean square error) which is defined as follows:

Ele}] = Eldi+WIXiXTWy - 24 XT W]
Eld) + EW!|E[Xx X{)EIWi) — 2E[d X} | E[W)]
= Bldi)+ WTE[Xi XF )W, — 2E[de XT )W, (2.10)
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Two significant assumptions were made to derive Equation 2.10. First, the weight
vector and the input signal vector are uncorrelated. This allows the initial equation
to be written as shown on the second line. Second, the filter has reached some point
in time where E[Wiy, — W] equals the zero vector. In other words, the weight
vector has converged to a solution and is treated as a constant with the & subscript

dropped. The final form of Equation 2.10 is
E[}] = Eldy) + WTRW —2PTW (2.11)

where R is called the input autocorre!.tion toeplitz matrix and is defined as

[ 600(0) Gon(=1) o us(~L)
(1) #55(0) e dua(l—1I)
R=EXiXT)= | $(2) $enl—1) o dusl2—1) (2.12)

_ ¢rx(L) ¢xz(L - l) ¢x$(0)

and @z.(n) = Elzrzr4n). P is the cross correlation vector and is defined as

9

[ $4:(0)

¢d:c(_l)

P= E[dek] = (2.13)

| ¢az(=L) |

where ¢4z(n) = E[dxTi4n). Assuming that the input signal and desired signal are sta-
tionary, K and P are constant and, therefore, they need no time subscript. However,
as it will be shown later, if the input signals are not stationary, the autocorrelation
matrix and the cross correlation vector will change with time. Equation 2.11 is the
performance equation of the LMS filter, also referred to as the mean-square error

(MSE) equation, and describes a performance surface which the filter searches to
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find the global minimum (10:20). The existence of a global minimum is guaranteed
by the characteristics of the quadratic equation. The final step is to take the gradient
of E[e}], set it equal to zero, and solve for the optimum weight vector. First, the

gradient vector, V, is defined as follows:
Vol = [0F 0wy OF[0w;....0 F/0wr)T (2.14)

where F is a function in w and V,, is the gradient operator and performs the first
partial derivatives on the argument with respect to wy (6:142). Next, applying the

V. operator to Equation 2.11 and solving for the minimum yields the following:

0 = VyuEld]+ V,WTRW — V,2PTW
0+ Vo (WT)(RW) — V,2PTW
2RW — 2P (2.15)

Remembering that the V,, can be written as a column vector (Equation 2.14), the
result was a straight forward manipulation working the matrix equations from left
to right and then applying the V,, operator. Solving Equation 2.15 for the optimum
weight vector, W* yields:

W*=RP (2.16)

It is important to note that this result assumes R is invertible (10:22). Finally,
substituting Equation 2.16 into Equation 2.11 for W produces the equation for the

minimum mean-square error which is the following:

frnin = E[dZ] b PTR_IP (217)

Equations 2.16 and 2.17 show that the optimum weight vector depends on the
inverse of the input autocorrelation matrix and the cross correlation vector. Given

a wide sense stationary input signal, the B matrix can be calculated and will have
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constant values. The P vector is calculated by performing the cross correlation of X
and di. As the correlation between the input signal and the desired signal increases,
the MSE decreases. In other words, the adaptive filter searches the performance
surface for the global minimum and in doing so maximizes the correlation between
Xk and di (12). Figure 2.13 is an example of a quadratic performance surface. The
vertical axis is the MSE and the horizontal axis are the weight values. There are only
two weights in this example. The bottom of the bowl represents the optimum solution

as defined by Equation 2.16. If the slope of the surface was shallow, the resulting
' gradient would be small and the weight vector would converge slowly towards the
optimum solution represented at the bottom of the bowl. However, if the slope of the
sides is steeper, the resulting gradient be larger and will drive the weights towards the
optimum solution faster. The main point is that the shape of the surface determines

the magnitude of the resulting gradient (12).

Another curve of interest for the LMS is the learning curve which is shown in
Figure 2.14. This shows the effect to the MSE as the filter weights change to adapt
to the input signals. Also shown is €xin Which is the horizontal line on the plot «nd
represents the error once the filler has reached the optimum solution as defined in
Equation 2.16 (10:51). In practice, the filter will seldom reach the ideal error because

of adaptation noise which biases the filter solution.

The critical assumption used throughout this development is that the input
signal is at least wide sense stationary. However, the EP signal is nonstationary.
Given the input signal is nonstationary, the performance surface and thus the mini-
mum point is now changing with time which then implies that the optimum weight
vector is also changing in time (3:519). In addition, the autocorrelation matrix and
the cross correlation vector are no longer fixed and the assumptions used in Equation
2.10 no longer apply. The next section discusses a nonstationary input to the LMS

filter in terms of the weight vector update equation.
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Figure 2.13. Performance Surface
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2.8.8 Nonstationary Input. The filter vector for the LMS algorithm is mod-

ified using the following equation:
Wi = Wi + 2ue Xy, (2.18)

where p is the gain constant and is used to adjust the speed at which the filter
adapts as well as the stability of the adaptation (10:100). Equation 2.18 shows that
the next weight vector, Wy;1, depends on the present weight vector plus a scaled
estimate of the error. Therefore, i determines the proportion of the error which is
included in the update (3:520). For input signals that are slowly varying in time,
the u can be increased to allow the filter to track the non-stationarity. However, as
p is increased the next weight vector is composed of a higher estimate of the error.
In other words, increasing p will cause the weight vector to vary around the actual
solution and in effect, add adaptation noise to the weight vector (13:34). Widrow
points out that noise generated due to the “lag” of the filter response is additive
to the noise generated by p. This “lag” noise is due to the filter trying to track a

performance surface which is changing in time (11:1151).

The point of all this is to show that an LMS adaptive filter is not designed
to process signals with rapidly varying statistics. However, the Ferrara time se-
quenced adaptive filter uses the LMS adaptive concept to process a certain class of

nonstationary signals.

2.3.4 Summary. The LMS adaptive filter searches a performance surface to
find the global minimum and thus maximizes the correlation between the input signal
and the desired signal. The optimum weight vector for a stationary signal is given by
Equation 2.16 and assumes the input signals are at least wide sense stationary. The
adaptive filter performance is degraded if the input signals statistics change rapidly
with time and may not converge to a fixed optimum weight vector. Therefore, use

of the Ferrara TSAF is considered and is the topic of the next section.
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2.4 Ferrara Time Sequenced Adaptive Filter

This section defines the TSAF and overviews the theory based on the LMS
theory presented in the previous section. A good deal of time will be spent developing

the optimum weight solution for the TSAF as part of this thesis is a direct application
of the TSAF.

2.4.1 Definition. The Ferrara TSAF is an adaptive filter designed to process
nonstationary signals which have statistics which repeat in time or are cyclostation-
ary (2:2i-22). The advantage of a TSAF is that it “..allows the weight vector to
change freely in time in order to accommodate rapid changes in the statistics of a
certain class of nonstationary signals, while allowing slow precise adaptation” (2:22).
The input signal for the TSAF is required to have a finite set of statistics that re-
peat in time (2:22). The importance of this requirement will become evident in the

following discussions.

2./.2 Overview of the TSAF. The TSAF can be viewed as a bank of time
multiplexed J.MS adaptive filters in parallel with only one filter active at a time
(Figure 2.15). Given that the input signal’s statistics repeat, the signal is assumed
to have a finite set of performance surfaces between repetitions. In addition, the
performance surfaces repeat following the same sequence during each repetition in-
terval. The TSAF is set up such that the filter sequences through the individual
performance surfaces at the start of each repetition (2:22-24). For the EP and EF
signals, the start of the repetition is the index time associated with the visual stim-
uli. BEach EF sample has 50 data points and therefore the filter will initially have 50

separate performance surfaces and 50 separate optimum weight vectors.

We are now ready to modify the equations presented for the LMS adaptive filter
to account for the TSAF. Equation 2.16 was valid for a wide sense stationary signal
and produced a single optimum weight vector for the single performance surface.

Now there are multiple performance surfaces and multiple input autocorrelation
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Figure 2.15. Time Sequenced Adaptive Filter

matrices and cross coirelation vectors. The result is that there will be multiple
optimum weight vectors. Thus, the optimum weight vector for the TSAF is defined

as follows:

W} = R;1P, (2.19)

The k index shows the effect of the time sequence on Equation 2.16 (2:27). This
result is not surprising if the TSAF is viewed as a bank of LMS adaptive filters in
parallel with only one filter active for each point in time or for each value of k. For
this thesis, each of the 50 data points will have a corresponding weight vector which
is updated as the filter moves “across” the data ensemble. It is now obvious that if
the set of performance surfaces was not finite (i.e. the statistics do not repeat), the
filter would have an infinite number of optimum weight vectors and would not be

realizable.

2.4.8 Optimum Augmented Solution. The development of the optimum weight
vector solution up to this point has assumed that the input signal does not have a

bias. This may not be true in general and for the EP signal is indeed not the case.
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It is now appropriate to present the .ime sequenced optimum weight vector solution
with a time-scquenced bias weight present to compensate for the time-sequenced
non-zero mean of the input signal. The notation will follow that used by Williams

in his development of the optimum weight vector (13).

Figure 2.16 shows the filter with the time-sequenced bias weight added. The
error signal is still formed from the difference of the desired signal and a new output

signal, Yqug,k, Which includes the bias weight and the filter output y;. The augmented

output signal is defined as

Yaugk = wb,k+yk

= wyr + WX

wwoT -

= W(;ug,k /\,a.ug,k (220)




where

Kovg = [t X7 2.21)
Waug,k = [wb,k Vf/.’c}T (222)

The augmented vectors in Equations 2.21 and 2.22 include the unity input to the
bias weight and the value of the bias weight at time k (13:39).

Now that the augmented input and weight vectors have been derived, the next

step is to determine the form of the optimum weight vector solution. Equation 2.19

is still the form of the solution. However, a new autocorrelation matrix and cross

correlation vector must be defined. The augmented autocorrelation matrix Rgyg x 1S
defined as

Raugk = ElXougk Xz:tg,k] (2.23)

Then using Equation 2.21 and substituting directly into Equation 2.23, the matrix

is now written as
EQ] E[X7]
Raug,k = J——— (224)
E[Xi] E[XiX[]
Recall that the input signal can be modelled as the sum of three independent com-
ponents: the average signal response, the jitter, and the pre-stimulus noise. Then
E[X:] = M, where M} is the average signal response as defined in Section 2.2.3.
Using this and Equation 2.12 the final form of augmented autocorrelation matrix is
1 M7
Raygr = (2.25)
M, Ry
The final hurdle is to define the new cross correlation matrix. This is fairly straight

forward as shown in the following:

Paug,k = E[deaug,k]T
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= Bldll X
= [max EldeXi]))¥
= [map Pi]” (2.26)

Equation 2.21 was directly substituted into the second line with E[di] = mq used
in the third line. Putting it all together, the optimum weight vector solution,which

includes the bias weight, is

-1

Wiugr = oM Tk (2.27)

M, Ry P
The time index k is present to remind us that the optimum solution is time varying.
Both Williams and Ferrara further reduce Equation 2.27 to gain additional insight
into the effect of the bias weight on the optimum solution and how it removes the
input signal mean (2) (13). The derivation is provided in Appendix B with only the
results presented here. By performing the vector multiplication in Equation 2.27
and performing some algebraic manipulation, the optimum weight vector solution
can be written as follows:
W,k My — MEF Qap

gk = | | = _ (2.28)
Wy F7'Qayp

where F, = B{(Qk + Ni)(@x + Ni)T] and is the autocorrelation matrix of the zero
mean signal. Qg = ElgaxQx] and is the expected value of the correlated signal
components of the input signal and the desired signal. In looking at Equation 2.28
the bias weight has removed the mean component of the input signal scaled by
F7*Qq). The output must be corrected to reflect the incorrect alteration made to
the input signal. This correction is taken care of by the bias weight adding on an
estimate of the correct mean, mgy (2:49). Another way to see this is to look at the

output of the filter in terms of the optimum weight solution.
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The filter output signal, Yauek, can be written in terms of the optimum filter

solution or

Yaugk = Wok+ Yk
= wp+ X,?W;
= mgp — MyF Qap + XTF Qe
= map+ (X{ = M{)F{ Qape (2.29)

«

The filter output equation “...suggest that the filter taps generate an estimate of
both the mean and the correlated stochastic components of the desired signal while
the bias weight removes the mean estimate generated by the filter taps and replaces

it with the correct mean estimate”(13:52).

Ferrara further points out that the input signal mean also shows up in the
minimum mean-square error and will increase the MSE of the filter if not removed.
This is especially true if the power of the mean component is high relative to the
other signal components (2:50). Therefor, if an input signal has 2 non-zero mean,
the bias must be included to reduce the error term generated by the filter. In other
words, the signal bias will offset the performance surface of the filter and the bias

weight will shift the surface to the desired position.

2.4.4 Summary. The Ferrara TSAF can be viewed as a bank of LMS filters
time multiplexed and in parallel with only one filter active at a time. The other key
point made in this section is that if an input signal has a bias, the bias will shift
the solution away from the desired optimum. In addition, the filter configuration
proposed by Ferrara with the bias weight added to the output of the filter was
analyzed with a presentation of the optimum weight vector solution in terms of the

bias weight and the Williams signal model.
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2.5 Chapter Summary

Several major points presented in this chapter are summarized before proceed-
ing to the next chapter. The EF and EP signals are a class of nonstationary signals
produced by the brain in response to auditory and/or visual stimuli. The EF signal
is modeled as a magnetic field generated by the flow of current along a thin wire and
is detected using a special device called a SQUID. The EP signal is the change in
potential due to the visual stimuli. This signal has been studied in great detail and,
for the purposes of this thesis, has been modeled as the sum of three uncorrelated
components: average signal response, signal jitter, and noise. This thesis considers
the application adaptive filter theory to the processing of these nonstationary signals

which are buried in strong background noise.

"The brief discussion presented on adaptive filters revealed that while the LMS
filter can adapt to signals with slowly changing statistics, the classical LMS filter
is not designed to handle signals with rapidly changing statistics as increasing the
speed of the adaptation adds noise to the solution. This warrants exploring the
use the Ferrara TSAY which is designed to process cylostationary signals (i.e signals
that have statistics which repeat in time). Furthermore, the EP signal has a non-zero
mean and some method must be used to compensate for the bias to reduce the MSE
of the filter and thus increase the accuracy of the optimum weight solution. Ferrara
suggests one method for removing the mean using a bias weight at the output of the
TSAF filter which is also time varying. The next chapter discusses the TSAF and
mPa algorithms along with a modified TSAF filter which removes the signal bias

before the TSAF filter.
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III. Filter Implementation and Verification

8.1 Introduction

The previous chapter presented the reasons for selecting the TSAF and the
theory behind the TSAF. The next logical steps are to implement the filter in soft-
ware and then test the program. Even after the filter implementation is verified,
the concept of estimating human EF using human EP must somehow be validated.

Therefore, there are five major goals for this chapter which are discussed next.

1. Define the equations and algorithms implemented in software. This section is
intended to familiarize the reader with the algorithms as they are implemented

in software and present an overview of how the program is organized.

2. Test individual sub-components to ensure they are error free. The purpose of
testing individual components is to quickly isolate any problems that might
exist with the code. The algorithms tested in this section are common to both

the LMS and the mPa and are the following:
o u; Update Algorithm.
¢ Bias Weight Update Algorithm.
o Filter Weight Update Algorithm.
3. Test the LMS filter to ensure it is error free. At this point the filter is fully
assembled with all the sub-components and tested with the LMS algorithm.
There are two test performed in this section. The first test uses noiseless input

signals which allows for a theoretical analysis. The second test stresses the

filter by adding noise to the input signal.

4. Test the mPa filter to ensure it is error free. The mPa has a unique input, the

P, vector, which is an estimate of the cross correlation statistics of the noise
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components. Therefore, this section first tests the P, estimator and then the

mPa filter which uses the output of the estimater.

(1]

. Validate the concept of estimating human EF using human EP. This section
uses simulated EP and simulated EF signals to test the filter in the config-
urations used in Chapter 4 for estimating the human EF. Simulated noise is
created for this section based on the cross correlation statistics of the human
EEG and human MEG and the autocorrelation of the human MEG. The use
of these simulated noise files and simulated signal files provides an elementary
model of the processing performed in Chapter 4. Therefore, this section tests

the TSAF and the concept of using the filter with human data.

Before proceeding to the filter overview, a brief section defining the notation used in

this chapter is presented next.

3.2 Notation

Several subscripts were used in this chapter and they are summarized below:

e ; identifies a specific data vector contained in the data ensemblc. For example,
X; is the j** data vector. j ranges from 0...(M —1) where M is the number

of data vectors in the ensemble.

o k identifies a specific sample at time k within a given vector. k ranges from

0...(N —1) where N is the number of data points in the vector.

e aug indicates the original vector is augmented with a bias weight. See the

TSAF filter solution presented in Chapter 2.

b indicates the variable is a bias weight.

d indicates the variable is associated with the desired input signal.

= indicates the variable is associated with the input signal.

p indicates the variable is associated with the mPa and P, vector.
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The TSAF uses either the LMS algorithm or the mPa as will be discussed.
To simply the notation, TSAFryms indicates the LMS algorithm is selected and

TSAF, p, indicates the mPa is selected.

3.8 TSAFpmg Filter

The TSAFaps program performs three major functions. First, the program
tracks and updates all the weights for each filter based on the LMS algorithm. Sec-
. ond, the degradation of the MSE due to the presence of a bias in the input signal
is reduced using a bias weight. To speed the convergence of the filter, a modified
TSAF filter is used with an additional bias weight preceding the TSAF. Third, the
program allows the gain constant, u, to adapt to different input signal energy levels

as will be shown.

3.3.1 TSAFpys Filter Update Algorithm. The LMS algorithm is the build-
ing block for the time sequenced algorithm used in this thesis and is presented here

once again

Wk+1 = Wi + 2uer X, (3.1)

k is the time index, p is the gain constant, and ¢ is the error. The LMS algorithm
is implemented using a linear combiner and is important because it is fairly straight
forward to implement and does not require any off line processing (10:99-100). The
important point to make is that the weight updute for the LMS is done over time
and thus a function of k. On the other hand, the TSAF filters are updated with the

next data vector at the same point in time as will be shown next.

To implement the T'SAFr s algorithm, one simply extends the LMS algorithm
vector. In other words, given a data ensemble of 100 vectors each with 50 discrete
sample points, the range on £ is 0 to 49 and the TSAFLms will have a separate

filter for each value of k. Then each filter is updated with the next data vector at
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the same point in time. This means that the TSAFpass filters are updat’ = “across”
the ensemble. This differs from the LMS in that the LMS algorithm i. updated in
time or “along” the ensemble which accounts for the additional subscript “j” in the

TSAFppms algorithm as shown in the following:
Wisik = Wik + 2per Xk (3.2)

k is the time and filter index and j is the data vector index. Again, note that the
weight vector is updated with the next data vector at the same point in time. The
next step is to add in the bias weight and rewrite Equation 3.2 using the augmented
vectors presented in the previous section. The T'SAFpys algorithm with the bias

weight is then
Waugii+1,k = Waug,jk + 2016k Xaug, ik (3.3)

Expanding this equation shows the update algorithm for the bias weight as well as

the TSAFus filter:

1

1
+ 2p €k (3.4)

W, . .
i Wi |, Xk |

W,k Whk

» [l

Waug,j+1,}: =

With the discussion moving towards the bias weight, it is appropriate to present the

change to the T'SAF s filter configuration.

Recall that the purpose of the bias weight is to reduce the MSE degradation
caused by the presence of any bias in the input signal. Figure 3.1 shows a modified
TS AFpps filter designed to remove the bias of the input signal before the filter. The
first thing to notice is that an additional time- sequenced bias weight, ws «, has been
added to the front of the TSAF;ps filter. By using a two stage filter, the first stage
removes the bias, my, and the second stage then operates on the jitter and noise
components of the input signal or ¢ + nx (13:114-115). Williams points out that

removing the bias before the filter allows the use of a larger p for faster convergence
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as the filter does not see the additional energy contained in the mean component of

the signal (13:81). This will be presented in more detail shortly.

Figure 3.1. Two Stage TSAF

To remove the bias before the filter requires some knowledge of what the bias
is. This knowledge will be learned over time by the bias weight using the following

algorithm:

Wh,541,k = Wh,jk + (2]):?15) (25 = w5k (3.5)
7=0...(M—1)and k=0...(N —1) where M is the number of data vectors and
N is the number of points in each vector. Equation 3.5 is simply a recursive mean
estimator and will converge to the ensemble average value for time k. An important
note is that the value of w4 is added back to the filter output. In addition, there
is a bias weight for each time sequenced filter and when wy 41,6 = we,k, the bias

weight vector will equal the ensemble average given a perfect adaptation. The last

algorithm is the calculation of p.
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As stated earlier, the gain constant p is determined adaptively for this thesis

and in general is defined as

_ Misadjusiment M
#= (L + 1)(signal energy) ~— (L + 1)(E[z3])

(3.6)

where L 41 is the number of filter taps (13:53). The misadjustment is “...a measure
of how closely the adaptive process tracks the true Wiener solution ...” (10:110).
As was presented earlier, for larger values of M and thus larger values of p the
adaptation will have more noise in the solution with faster adaptation. For this
thesis, the misadjustment is fixed at 0.05 with the p allowed to vary as a function of
the filter size and signal energy. The reason for not fixing p is to allow for optimum
adaptation at various signal energy levels. Looking at Equation 3.2 one can sec that
if the energy of the X vector is large, it will change the resulting update vector
more than a smaller energy input vector for a fixed x. However, if ¢ is updated with
each new input vector based on the signal energy, a stable convergence will result for
all the filters even though the each filter operates on different portions of the input

signal. The p is then updated according to the following recursive algorithm:

M
(L +1)(E(=3))

figa e = 095055 + 0.05 (3.7)

The % subscript indicates there is a separate u for each filter. The 0.95 essentially
adds finite memory to the update and can be decreased if a shorter memory of past
values is desired (13:53-54). The next step is to present how the TSAFpus filter is

implemented in software.

8.8.2 TSAF Software Overview. Each of the algorithms presented thus far
are implemented in separate procedures which are then called fiom the driver or

main program loop. The flow of the program for the T'SAFy ¢ is presented below:

o Initialize variables, arrays, and vectors (only once).
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e Load input signal and desired signal.
e Update the bias weight.

e Remove bias from the input signal.
e Calculate and update .

o Calculate output signal, y.

o Add bias to y; forming yaug,k-

o Calculate error, ey

o Update weight vector.

e Loop if more data.

Appendix F contains the program listing with an introduction to the data size used
and general program information. In general, the filter program ran several passes
through the data ensemble to let the bias weight learn the eusemble average. The
bias weights were then frozen and the data ensemble passed through again to let the

filter weights adapt using zero mean filter inputs.

3.4 TSAF,p, Filter

The Williams mPa algorithm estimates the cross correlation statistics of the
desired and filter input noise components and then removes the biasing effects during
the weight update. The advantage of the mPa is that it allows the use of a single
input signal and thus a single sensor. In this case, the input and desired signal
are the same (13). While most of the TSAF, s filter algorithms are still valid for
the TSAF,, p,, changes were required to the filter update algorithm to account for
the use of a single inpul. In addition, an algorithm was required to generate the
statistics for the noise P-vector or P,. This section first presents the T'SAF,, p, filter

update algorithm which is derived in Appendix D, followed by a description of the




P, vector estimator. The final portion of this section will overview the TSAF, po

filter implementation.

8.4.1 TSAF,p, Filter Update. The TSAF,,p, filter update equation is
Witk = Wik + 2urer X — 2px P j (3.8)

where P, ; = [po p1...pL]] and j is the vector index and k is the time index (13:106).
The P, vector is not a function of time as the noise cross correlation statistics
are assumed to be stationary, therefore, no time index is required. The TSAF;,pa
filter with the P, estimator is shown in Figure 3.2. One thing to note is that the
TSAF,.p, filter has an additional input which is the P, vector. In addition, the

input and desired signal are one in the same for the single sensor configuration. The

my =+ q + Nk
Prestimulus
Estimator
B,
qr + ng Yk Yaugk T Y €
._>< : >-—> TSAF ——>( ; }-»(“ )-»
+ + z
- 4
e :
___________________ .
Wh,k
P

Figure 3.2. TSAF,,p, Filter With Single Sensor
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role of the P, vector is to remove the biasing effects of the noise cross correlation
statistics from the weight update algorithm (13:97). These statistics are estimated
from the pre-stimulus noise. The algorithm for the P, vector estimator will follow
shortly. The next step is to add the bias weight into Equation 3.8 resulting in the

following:

W,k 1 0
Wauy,j+l,k = + 2prep - (39)
Wi |. Xk |. P,

J j i

With the change incorporated into the LMS update algorithm, the algorithm to

determine the P, vector is presented next.

3.4.2 P, Vector Estimator. The P, estimator is an adaptive filter with the
change that each weight is updated independently of the other weights. Figure 3.3
shows a block diagram of a non-causal three tap estimator. The important point is
that the estimator must have at least as many taps as the TSAF,,p, filter because
the P, vector is directly subtracted from the weight vector. The estimator algorithm
is

Pojrsr = Pojp + (2)(0.05) (P 1 — Pajik) (3.10)

where

Pojk = [po pr-pLlj (3.11)

and each individual components of the P vector are defined as

Pijk = Elna;xnz ji-i] (3.12)

na is the noise associated with the desired input and n. is the noise associated
with the input signal. j is the vector index, k is the time index, and i = 0...(L)
and is the offset to sequence the input pre-stimulus noise component. The TSAF,, pa
estimator estimates the noise cross correlation statistics using the pre-stimulus data

and passes the P, vector estimate to the T'SAF,,p, for use with the filter update




Nk41 ng Nk-1

nn nNEng.
+ kT k41 + KTtk
Ch41 - €k -
Dk+3 Pk
1 1

Figure 3.3. Three Tap Non-Causal P, Vector Estimator (13:93)

equations (13:88). It is important to note that the estimator algorithm is time-
sequenced through the pre-stimulus data. However, once the estimator uses all the
pre-stimulus data points contained in the input vectors, the taps are frozen and the
resulting estimate is passed to the filter. For example, let the input data vector to
the filter contain 20 pre- stimulus data points followed by 50 response data points for
a total of 70 discrete data points. Again, there are 100 data vectors in all. The P,
estimator works on the first 20 data points and then passes the resulting P, vector
estimate to the TSAF. The TSAF,,p, then uses the next 50 data points and the P,

vector to update its filters.
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3.4.8 TSAF,p. Software Overview. The TSAF,p, program flow is very
similar to that of the TSAFps. However, there are several additional procedure
calls along with changes to existing procedures. The changes are minor and ac-
complished within the procedure by checking a flag variable. If the flag is set for
mPa, then appropriate action is taken within the algorithm execution. Now for the

overview of the main program loop which is the following:

e Initialize variables, arrays, and vectors (only once).
e Load pre-stimulus vector.

e Update P, vector.

Load input signal.

Update the bias weight.

Remove bias from the input signal.

Calculate and update ui.

Calculate output signal, yx using mPa.

Add bias to yy forming yYaug.k-

L J

Calculate error, e

Update weight vector.

¢ Loop if more data.

Again, Appendix F contains the program listing with a description of the code and

major procedures.
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3.5 Filter Verification

This section presents the major tests used to verify that the TSAF filter and
the individual components were error free. Several tests were performed to debug
the initial program and are not listed. The tests presented here are intended to
establish the integrity of the software by starting with simple test designed to check
individual algorithms and concluding with test which stress all the sub-components
of the filter. Therefore, each test builds on subsequent tests until the entire filter is
assembled. With this in mind, the tests presented in this chapter are organized as

follows:

o Testing of Individual Algorithms. These are the simplest test and are intended
to verify the performance of the individual algorithms which the TSAFps
and TSAF,,p, filters share in common. The specific algorithms tested are the

following:

1. ur Update
2. Bias Weight Update

3. Filter Weight Update

These test are discussed in more detail in the following sections.

o Testing of the TSAFyms. Once the individual components are verified, the
TSAF filter using the LMS algorithm is the next level of complexity. There

are two test performed in this section.

1. TSAFppms Test 1 compares experimental results against theoretical re-

sults. The input files are noiseless and only contain the jitter component.

TSAF s Test 1T uses human EEG noise added to the noiseless input

signal of TSAFps Test 1.

to

The filter performance is characterized by comparing the filter output results

from T'SAFpps Test 1to those of TSAFpas Test I1.
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o Testing of the TSAF,,p,. The mPa uses the P, vector to update the filter
weights. The P, vector is generated in a separate algorithm which estimates
the cross correlation statistics of the input signals. Therefore, three tests are

performed in this section.
1. The P, Estimator Test I verifies the performance of the estimator against
a single input file which is AWGN,.

2. The P, Estimator Test II verifies the estimator taps converge to zero given

two uncorrelated input files are used.

3. The TSAF,,p, Test ensures the mPa implementation is error free using

the output of the estimator.

8.5.1 Test Data Files. The simulated EP data files were used along with
computer generated data files to verify the TSAFpps and the TSAF,p, filter im-
plementations. In general, the files contained 100 data vectors with 50 discrete
sample points in each vector. The reader is referred to Appendix E for further in-
formation on the computer generated files. The data files used in this chapter are

defined below:

o AWGN, was additive white gaussian noise with zero mean and unity variance.

e AWGN, was additive white gaussian noise with zero mean and unity variance

and uncorrelated with AWGN,.
o AWGNBIAS was AWGN, with a time varying bias added.

e QDAT was derived from the simulated EP data set and contained the jitter

component, Q;.

o SDAT contained the mean and jitter components, M, + Q,, from the simulated

EP data set.

¢ DDAT contained M, + @, + N, components from the simulated EP data set.
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8.5.2 Test of Individual Algorithms. This section performs the following stand
alone test of algorithms which are common to the TSAFp s and the TSAF,, p,:

o u; Update.
¢ Bias Weight Update.

o Filter Weight Update.

The purpose of the individual cc iponent testing is to help isolate any deficiencies

within the algorithms.

8.5.2.1 i Update Test. This test verified the implementation of the py
update algorithm. This algorithm initially had problerns in that a signal with zero
energy, E[z?] = 0, produced an infinite gain constant. This problem was resolved by
adding an offset of 0.01 to the calculated signal energy. The test for this algorithm
simply consisted of passing the AWGN, file through the algorithm. Given the
simplicity of the algorithm, this was the only test performed. The algorithm was
verified by monitoring the variables during the program execution using the debug
features of Turbo Pascal and comparing the values against the calculated values. All
the calculations for two iterations were verified. The gain constant update algorithm

performed as expected.

3.5.2.2 Bias Weight Update Test. The bias weight tracks the mean of
the input signal at each point in time or for each value of k. Therefore, each of the
TSAF filters has an associated bias weight which is updated across the ensemble.

The bias weight update algorithm will drive each weight to the ensemble average of

its respective column, k, in the data ensemble. A preliminary test using AWGNBIAS
file was performed. A total of 100 separate data vectors were passed through the

filter and then the values of bias weights were compared to the ensemble average of

AWGNBIAS. There was no significant difference.

3-14




qr + my qx

W1p,k

Figure 3.4. Bias Weight Test Configuration

To further test the bias update, the SDAT file was used which contained
mi + qx. The test configuration is shown in Figure 3.4. The expected result was
that the bias weights would settle to m; which was already calculated and discussed
in Chapter 2. The test was performed exactly as done for the AWGN, file. Figure
3.5 shows the actual bias which is my. The error (my — wek) is shown in Figure
3.6 and is essentially zero for all the bias weights. Based on these two test, the bias

update algorithm was verified and can be assumed to work correctly.
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3.5.2.83 Weight Update Test. The previous test confirmed the imple-
mentation of the gain constant and bias weight update algorithms. These next test
use the TSAF without the bias weight update algorithm. However, the i update
algorithm is used to maintain a stable convergence. The following are the two test

used to verify the weight update:

¢ Weight Update Test 1. This test used QDAT without noise for both the desired

and input signals to test the filters convergence against a theoretical solution.

o Weight Update Test II. Noise is added to the input signal to test the filters
ability to uses the correlation between the jitter components to estimate the

desired signal.

It is important to note that each test is only valid for the specific settings used in

the program initialization. Therefore, both test have a table of the filter settings.

The filter configuration for Weight Update Test I is shown in Figure 3.7. The
input signal and the desired signal are the noiseless QDAT file and the filter settings
are shown in Table 3.1. The reader is referred to Appendix C for the calculation of
the optimum filter solution when the input and desired signal are the same. The
calculation is done for both the causal and non-causal case. The test results presented
here are for the non-causal filter. Initially the filter did not converge to the theoretical
solution shown in Table 3.2. However, the weights were approaching the solution
with each pass at the data ensemble indicating the filter was moving slowly towards
the desired solution. Given the input and desired signal were both noiseless and
exactly the same signal, one would expect the filter to converge rather quickly to
the theoretical solution. We will now digress and discuss a change made to the ux

algorithm to speed up the adaptation.

Figure 3.8 is the circuit model for the g algorithm as defined in Equation 3.7.

Note that the E[2?] term is an estimate of the signal energy which can be written as
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Figure 3.7. Weight Update Test I Configuration. The input signal is the jitter
component of the simulate EP data.

Parameter Setling
Number of Runs 20
Number of Taps 3

Misadjustment 0.5
Mode Non-causal
Algorithm LMS

Table 3.1. Weight Update Test I Filter Settings
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Elz}) = Elz?] + ny, (3.13)

where n, is the adaptation noise which is passed to the leaky integrator stage and
E[z?) is the true signal energy. This noise is captured by the long memory of the
integrator and corrupts future calculations of ux. The noise present reduces th;e value
of the gain constant and slows the adaptation. To reduce the noise, an estimator
could be added to Figure 3.8 which more accurately estimates the signal energy
and reduces ny over time. However, a simpler approach is Figure 3.9 where the
integrator stage is dropped and the update for py is instanianeous without memory

of past valucs. Therefore, the py algorithm was modified to the following:

~ M
M= T+ 1)(E2)(Counter)

(3.14)

The Counter is incremented at the end of the data ensemble to linearly decreases
ux as a function of the number of passes the filter makes at the data ensemble. This
allows the use of a larger M at the start to rapidly move the weights towards the
desired solution. Over time, the Counter decreases the gain constant and allows the
filter to fine tune itself. All the test presented here use this algorithm and the per-
formance of the filter improved in terms of converging to the desired solution in less
time. Table 3.3 shows the experimental results for selected filters with the instan-
taneous update of p; shown in Figure 3.9. The filters converged to the theoretical

solution indicating the weight update algorithm was working correctly.
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Figure 3.9. Circuit Model of Improved p; Update Algorithm

3-20




Filter
Tap S 6 20 21 34 35 47
() 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wy 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Wy 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.2. Weight Update Test I Theoretical Solution. The weight values are for a

non-causal three tap filter.

Filter
Tap 5 6 23 24 34 35 a7
wy 0.037 0.004 0.000 0.000 0.005 0.000 0.019
Wo 0.946 0.993 1.000 1.000 1.000 1.000 0.928
Wy 0.027 0.004 0.000 0.000 0.000 0.000 0.090
Table 3.3. Weight Update Test I Experimental Results. The weight values are for

a non-causal three tap filter.




The next test is Weight Update Test II and is designed to stress the weight
update algorithm by adding noise to the input signal. The purpose is to ensure the
algorithm uses the correlation between the jitter components to estimate the desired
signal from a noisy input signal. The filter configuration is shown in Figure 3.10
with the filter settings shown in Table 3.4. The noise added to the input signal was
the human EEG noise originally used in the simulated EP data files. The filter size
was based on the autocorrelation of @, in Figure 2.5 which shows there is significant
correlation out to £ = £7. Therefore, the filter was set with 15 taps to use the

correlation.

Figures 3.11, 3.12 and 3.13 compare the filter output to the corresponding
desired signal. The vectors selected show a worst, moderate, and best case. The
error in the filter output for each of the specified vectors is, in part, due to the
adaptation process of the algorithm. Recall that the autocorrelation matrix and
cross correlation vector are defined in terms of the expected value. This implies
that the weights converge to some average value based on the statistics of the data.
Therefore, those input vectors which are closely associated with the average will
generate a more accurate output versus those vectors which are far away from the
average. However, the performance of the filter is considered acceptable and we are

ready to test the fully assembled TSAF.
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Figure 3.10. Weight Update Test II Configuration

Parameter Setting
Number of Runs 20
Number of Taps 15

Misadjustment 0.5
Mode Non-causal
Algorithm LMS

Table 3.4. Weight Update Test II Filter Settings.
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Figure 3.13. Weight Update Test II Results. Comparison of ygyg,24 and Qo4




3.5.8 TSAFips Test. With the uy update, bias weight, and the weight up-
date algorithms tested and verified, the two test presented here assemble the three

sub-components and test the TSAFpys filler. The two test performed were the

following:

e TSAFrps Test 1. This test is similar to the Weight Update Test I in that
the filters performance is compared against a theoretical solution. The SDAT
file which contains the jitter and mean components is used for the input and

desired signal.

e TSAF s Test 11. This test adds noise to the input signal to verify that the
filter removes the mean component of the input signal and then uses the cor-

relation between the jitter components to estimate the desired signal.

3.5.83.1 TSAFpps Test 1. The configuration for TSAFps Test 1 is
shown in Figure 3.14 and the filter settings are in Table 3.5. Again, the purpose
of this test is to verify that the bias weight removes the mean component of the
input signal allowing the filter to use the jitter components of the noiseless input
and desired signal to generate an estimate of the desired signal. The expected results
from this test, Table 3.6, were exactly the same as for the Weight Update Test 1.
Given the input and desired signal are the same after the bias weight removes my,

the center tap should converge to unity with all other taps going to zero.

Initially som.e of the TS AF s filters were diverging from the expected results.
In analyzing the filter configuration, it was determined that when the filter initially
starts, the output of the bias weight contains a considerable amount of noise due to
the small number of samples the bias weight has used to generate an estimate of the
true signal mean. To correct this, a delay was placed on starting the TSAT filter
adaptation which gave the bias weight adaptation a “head start”. The delay was set

to 20 which prevents the TSAF from starting until the presentation of vector 21 of
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Figure 3.14. TSAFpps Test I Configuration

Parameter Setting
Number of Runs 20
Number of Taps 15

Misadjusiment 0.8
Mode Non-causal
Algorithm LMS

Table 3.5. TSAFpapg Test 1 Filter Settings
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the bias weight providing a stable convergence for all of the TSAF filters.

Table 3.7 shows the results from this test and indicates the filters did converge

to the desired solution with the filter performing as expected.

Filter
Tap 5 6 20 21 34 35 47
wy 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Wo 1.000 1.000 1.000 1.000 1.000 1.000 1.000
woy 0.900 0.600 0.000 0.000 0.000 0.000 0.000

Table 3.6. TSAFps Test 1 Theoretical Solution

Filter
Tap 1 2 13 24 34 35 47
wy 0.000 0.007 0.002 0.000 0.000 0.000 0.072
wo 0.981 0.940 0.997 1.000 1.000 1.000 0.943
W_y 0.155 0.197 0.010 0.000 0.000 0.600 0.015

Table 3.7. TSAFppms Test I Experimental Results

the data ensemble. This delay reduced the adaptation noise passed to the filter from




3.56.8.2 TSAFyms Test II. The configuration for TSAFms Test I is
shown in Figure 3.15. The input signal was DDAT and the desired signal was SDAT.
The only difference between the two signals was the human EEG noise in the input
signal. This test ensures the bias weight removes the mean component of the input
signal allowing the T'SAFps to use the correlation between the jitter components
in the presence of noise to generate an estimate of the desired signal. The filter

settings are shown in Table 3.8.

The results from the test are shown in Figures 3.16, 3.17,and 3.18 which com-
pares the desired noiseless signal to the filter output. Again, the outputs selected
show a worst, moderate, and best case estimation of the signal based on a visual
match. The filter output does provide a reasonable estimate of the noiseless desired

signal and indicates the filter was performing as expected.
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Figure 3.15. TSAFpps Test 11 Configuration

Parameter Setting
Number of Runs 10
Number of Taps 15

Misadjustment 0.5
Mode Non-causal
Algorithm LMS

Table 3.8. TSAFprs Test I Filter Settings
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8.5.4 TSAF,p, Verification. Up to this point, there have been five test per-
formed. The first three test verified that the individual algorithms common to the
E TSAFLms and TSAF,,p, were operating correctly. The last two test verified the
performance of the TSAFLys. We are now ready to verify the TSAF,p,. The
mPa performs two major task. First, it generates an estimate of the cross correla-
tion statistics between the pre-stimulus noise of the input and desired signals and
second, the mPa removes the estimate from the weight update. Therefore, the esti-
mator must be verified as well as the mPa weight update algorithm. The following

test are performed in this section:

o P, Estimator Test. These two test are intended to show the estimator is
implemented correctly and indeed produces an estimate of the cross correlation

statistics of the noise components.

e mPa Test. This test used a computer generated noise file along with QDAT
to test the performance of the mPa using the P, vector generated from the

estimator.

2.5.4.1 P, Estimator Test. The configuration for P, Estimator Test 1
is shown in Figure 3.19 where the input noise signal is also the desired noise signal.
Given the AWGN, file was created with zero mean and unity variance, the expected
resuits were that the center tap of the P, vector would converge to unity with all
other taps going to zero. The expected and experimental results are shown in Table

3.9 and confirmed that the estimator performed as expected.

P, estimator Test II used two separate files for the input and desired sig-
nals which were uncorrelated. The test configuration is shown in Figure 3.19. The
expected results from this test are that all components of the P, vector would con-
verge to zero as the files were created with no cross correlation. Tabie 3.10 shows
the expected and experimental results. Again, the estimator performed as expected.

Therefore, based on these test the estimator algorithm was verified.
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Figure 3.19. P, Estimator Test 1 Configuration. The configuration used a 5 tap
non-causal estimator resulting in P, containing 5 points.

Tap Ezpected Fxperimental
P2 0.0000 -0.0191

n 0.0000 -0.0136

Do 1.0000 0.9990
P-1 0.0000 -0.0136
pP-2 0.0000 -0.0191

Table 3.9. P, Estimator Test I Expected and Experimental Results




AWGN,

AW G Ny, 1 B,

— Estimator >

Figure 3.20. P, Estimator Test II Configuration. The configuration used a 5 tap
non-causal estimator resulting in P, containing 5 points.

Tap Bepected FEzxperimental

P2 0.0000 -0.0024

2 0.0000 -0.0031

Do 0.0000 0.0056
P-1 0.0000 -0.0036
P2 0.0000 -0.0054

Table 3.10. P, Estimator Test II Expected and Experimental Results
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8.56.4.2 " AF,p, Test. With the estimator working, the next test ver-
ified that the mPa algori. ., asing the output from the P, estimator, was operating
correctly. The test configuration is shown in Figure 3.21. The input noise was the
NOISE.MPA file which was generated with correlation and contained 100 vectors
with 70 points in each vector (see Appendix E). The first 20 samples in each vector
provided the pre-stimulus noise. The remaining 50 samples were added to the SDAT
file to form the input signal to the filter. Given the filter is using a single sensor (i.e.
input and desired signals are the same), the resulting P, vector contains an estimate
of the autocorrelation of the pre-stimulus noise. Table 3.11 shows the filter settings

used for this test.

The results are shown in Figures 3.22, 3.23, and 3.24. The filter output does
in fact resemble the noiseless desired signal indicating the mPa removed the biasing
affects of the correlated noise. Another plot of interest is Figure 3.25 which shows the
resulting values in the P, vector indicating the estimator did detect the correlation in

the pre-stimulus noise. This final test verifies the correct operation of the TSAF,, pa.
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Figure 3.21. TSAF,,p, Test Configuration

Parameter Setting
Number of Runs 10
Mumber of Taps 15

Misadjustment 0.5
Mude Non-causal
Algorithm mPa

Table 3.11. TSAF,,p, Test Filter Settings
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Figure 3.24. TSAF,,p, Test Results. Comparison of yaug,24 and Q24
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Figure 3.25. T'SAF,,p, Test Results. Plot of P, vector.




3.6 Validation of Concept

Up to this point, the T'SAFpps and TS AF,,pe have been tested for cases where
the filter input signal was noisy while the desired signal was noiseless. However, the
test were extremely important in establishing the integrity of the filter implementa-
tion. The final test investigates the concept of using human EP to estimate human

EF signals.

Testing the concept is accomplished by testing the filter using simulated EF
signals created from the simulated EP. The creation of the simulated EF is based on
the observation that the ensemble average of the human EP appears highly correlated
with the ensemble average of the human EF signal when phase shifted 180 degrees
(15:34). An elementary approach to creating simulated EF is to first invert the EP
to mimic the 180 degree phase shift and then liner filier ti.e signal. This is discussed

in more detail later.

The following presents a layout of this section:

o Analysis of Human EEG and MEG noise. This section performs the cross
correlation between the human MEG ard EEG noise components as well as
the autocorrelation of the MEG. The purpose is to determine if there is any
cross correlation between the EEG and MEG based on a limited data set. In
addition, the results from the statistical analysis determines how the simulated

noise will be generated for the test which follow.

e Concept Test 1. This test verifies the filters ability t detect the inversion and
forward modeling used to create the simulated EF data file without noise.
Using a noiseless input and noiseless desired signal allows us to predict the
weight values hased on the modeling used to create the simulated EF signal as

will be shown.

o Concept Test II. For this test, the TSAFyums is used with computer gencrated

noise added to the simulated EF and EP signals. The configuration for this




test is identical to the one used in Chapter 4 and is intended to test the ability
of the TSAFpars filter to estimate the simulated EF signal in the presence of

noise and resolve the forward modeling use to create the simulated EF.

¢ Concept Test III. Now the TSAF,,p, filter is used with the same data files
as in Concept Test II. The purpose of this test is to assess the ability of the
T'SAF,p, filter to estimate the simulated EF signal in the presence of noise
and resolve the forward modeling. The ultimate goal is to compare the LMS
performance to the mPa when there is cross correlation between the noise

components.

o Comparison of the TSAFps and TS AF,;, p, Performance. This section presents
a comparison of the performance between the different test configurations in
terms of the averaged squared error. Since these test use deterministic signals,
a direct comparison of the filter output to the noiseless desired response is

possible.

3.6.1 Anclysis of Human EEG eand MEG. The LMS algorithm assumes there
is no correlation between the noise components and high degree of correlation be-
tween Lhe jitier components. Any correlation between the noise compenents will
cause the LMS algorithm to converge to a biased filter solution. Therefore, before

jumping directly into testing, it is appropriate to look at the noise statistics.

Human EEG noise and MEG noise were obtainc by extracting the pre-stimulus
noise from the human EF and EP data files provided by AAMRL. The resulting MEG
and EEG files contained 80 vectors with 20 sample points in each vector. A rectan-
gular window was used o perform the cross correlation of the MEG and EEG noise

and the autocorrelation of the MEG.

The cross correlation is shown in Figure 3.26 and indicates there is indeed cre 8
correlation between the MEG and EEG noise components in this particular data set.

The autocorrelation of the MEG is in Figure 3.27 which shcws there is correlation
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within the MEG noise itself. It is important to note that this analysis only applies
to the specific data files used here and should not be extended to MEG and EEG

noise in general without future research. The significance of the cross correlation is

two fold:

o First, we expect the TSAFp s to use the cross correlation between the noise
components to bias the weight vector solution. This bias is undesirable, but,

unavoidable if the LMS algorithm is used.

o Second, the mPa should see the cross correlation in the noise resulting in non-
zero vafues in the P, vector. The mPa will then try to reduce the biasing
affects by removing an estimate of the cross correlation statistics in the weight

update.

Based on these observations, one might expect the TSAF,p, to produce a more
accurate estimate of the EF signal over the T'SAfpys. To confirin this hypothesis,
the noise files used in Concept Test II and III were created with cross correlation
to simulate the correlation discovered between the human EEG and MEG. Before
testing with correlated noise, the basic filter configuration is tested using noiseless

signals.
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Figure 3.26. Cross Correlation of Human EEF and Human MEG. The correlation
was performed using a rectangular window.
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Figure 3.27. Autocorrelation Human MEG. The correlation was periormed using a
rectangular window.
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3.6.2 Concept Test I. The purpose of this preliminary test is to start with a
noiseless input and noiseless desired signal and check the filter’s ability to estimate
the simulated EF using simulated EP. The filter configuration is shown in Figure
3.28 which also shows the forward modeling used to create the simulated EF from
simulated EP. The inverter performs the 180 degree phase shift corresponding to the
observation that the ensemble average of the human EF appeared highly correlated
with the ensemble average of the human EP when phase shifted 180 degrees. The
linear filter generates a signal which is correlated with, but, not identical to the
simulated EP. Given there is no quantifiable data from which to generate a model,

the transfer function of the filter was chosen arbitrarily.

Given the input signals are both noiseless and only differ by the linear operation
of the model, the filter weights should converge to model the forward plant and
inverter, there by creating an estimate of the simulated EF. In other words, the
TSAFps must perform the same linear operations on the input signal that were

performed to creatc the desired signal.

It was at this point that the need for an additional bias weight was discovered.
T+ reader may have noticed the additional bias weight, wy 4, in Figure 3.28. In
the two sensor configuration, the mean of the input signal is not necessarily equal to

the mean of the desired signal or

Mgk F Mk (3.15)

The input bias weight only estimates the mean of the input signal and is isolated
from the desired signal. Therefore, without wy 4, the error signal would update the

filter weights using the following:

€& = dk"'yaug,k

= Mgk -+ g% — Mz — Yk
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= (md,k - mx,;,.) + (Qd,k - VVEX;;) (3.16)

Note the presence of the (mgx —mzx) term which is the difference between the mean
components of input and desired signals. The error term now contains a non-zero
mean component, (mg—mzk), which the filter can not remove by linearly weighting
a zero mean input signal. Therefore, ws q,x was added to remove the mean component
of the desired signal and m,  is no longer added back to the filter output in the two
sensor configuration. This allows the filter to operate on a zero mean input and
zero mean desired signal. mgy is then added back to the filter output as the bias
of the desired signal is assumed to be the bias contained in filter output. Given the
algorithm was a duplicate of the one used for the input signal, no additional testing

was required other than those presented here.

Table 3.12 shows the filter settings used for this test followed by the expected
results Table 3.13. The expected results were derived from the forward model used
to create the simulated EF. Performing the multiplication indicated by the inverter

preceding the filter, the resulting transfer function is
0.25 — 2* = 0.252° - 2° (3.17)

The Z? term in Equation 3.17 represents a lag of two which corresponds to filter tap
w_o and the Z° term corresponds to tap wo which is the zero lag tap. The filter
weights should converge to the coefficients of the transfer e. . ‘ion which are the
values shown in Table 3.13. The test results are shown in Table 3.14 and indicates

the filter did indeed converge to a solution which matched the forward modeling.
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Figure 3.28. Concept Test I Filter Configuration

Parameler Setting
Number of Runs 10
Number of Taps 5

Misadjustment 0.5
Mode Non-causal
Algorithm LMS

Table 3.12. Concept Test I Filter Settings
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Filter
Tap 10 23 29 43
Wy 0.000 0.000 0.000 0.000
wy 0.000 0.000 0.000 0.000
Wo 0.250 0.250 0.250 0.250
Wy 0.000 0.000 0.000 0.000
(T -1.000 -1.000 -1.000 -1.000

Table 3.13. Concept Tesi I Expected Results

Filter
Tap 10 23 29 43
w2 -0.064 -0.005 -0.032 -0.097
wy 0.165 -0.012 0.045 0.184
Wo 0.215 0.287 0.259 0.225
W1 -0.169 -0.038 -0.054 -0.148
Wy -0.871 -0.984 -0.968 -0.89387
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3.6.83 Concept Test II The previous test showed that, the T'SAFyps was able
to resolve the forward inodeling used to create the simulated EF for a noiseless input
and desired signal. Concept Test II parallels the test to be performed in Chapter 4
in that correlated noise is added to the input and desired signal as shown in Figure
3.29. Recall there was correlation in the human EEG and MEG, therefore, the noise
components used in this test were created with cross correlation. The input filter
noise file is SIM.EEG and the desired signal noise file is SIM.MEG. Appendix E

shows how these noise files were generated.

Table 3.15 shows the filter settings used for this test which also are the same
settings to be used in the following chapter. The results from the test are shown in
Figures 3.30, 3.31, and 3.32. The plots indicate the filter was generating an output
which appears, in some sections, to be offset from the noiseless desired signal. This
may be due to the correlation present in the noise components which the LMS algo-
rithm is using to update the filter weights. In effect, the LMS can not differentiate

between the jitter cross correlation and the noise cross correlation.
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Figure 3.29. Concept Test II Filter Configuration

Parameter Setting
Number of Runs 10
Number of Taps 15

Misadjustment 0.5
Mode Non-causal
Algorithm mPa

Table 3.15. Concept Test II Filter Settings
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Figure 3.30. Concept Test II Results. Comparison of y,ug6 and Qg
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Figure 3.31. Concept Test II Results. Comparison of y,ue,2: and Q2.
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Figure 3.32. Concept Test II Results. Comparison of yYaug,24 and Qoq4.
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3.6.4 Concept Test III. The purpose of this test is to use the same input
signals as in Concept Test II with the TSAF,,p, instead of the TSAFps. The
test configuration is shown in I'igure 3.32 with the filter scttings shown in Table
3.16. Again the configuration and filter settings are identical those to be used in

Chapter 4.

The results {rom this tect are shown in Figures 3.34, 3.35, and 3.36 and show a
significant improvement over those from Concept Test II which used the T'SAFLass.
The final data piesented for this test is the P, vector in Figure 3.37 which shows
that the estimator detected the cross correlation present in the pre-stimulus noise.
One expects that the TSAF,, p, used the P, vector to reduce the biasing effects of

the correlaticn in the filier soluiion.

3-48

A LN A1

R T R




EFy +nag

EP.+ng Wh,d,k

Figure 3.33. Concept Test III Filter Configuration

Parameter Setling
Number of Runs 10
Number of Taps 15

Misadjustment 0.5
Viode Non-causal
Algorithm mPa

Table 3.16. Concept Test 111 Filter Settings
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Figure 3.37. Concept Test IIT Results: P, Vector which contains an estimate of the
cross correlation statistics of the pre-stimulus noise.
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3.6.5 Comparison of the TSAFys and TSAF,,p, Performance. While the
filter output from Concept Test III appeared better than the output from Concept
Test II, only three of tlie 80 vectors were displayed. Therefore, the purpose of this
section is to quantify the error of all the test used in this section. The figure of merit
for a relative comparison between the test is the difference between the filter output,
Yaug,k, 2nd the noiseless desired signal. The error is then squared and averaged over
all the data points and vectors. The error for each filter configuration is then defined
as the following:

1 -
€=y jgf)

1 Nzl(SDATJ',k - yauy.j.k)2 ' (3.18)
k=0

where M is the number of data vectors, N is the number of data points in each
vector, j is vector index, and k is the time index. Equation 3.18 results is a single
number representing an average square error between the noiseless desired signal and
the filter output. This calculation is only possible because we used simulated data

and, therefore, have a priori knowledge of the true signal component.

For comparison purposes, an additional test was performed with the TSAF,,p,
using a single senor. The filter configuration was identical to that used in Concept
Test III in Figure 3.33 except that both the input and desired signals were the
simulated EF buried in the simulated MEG. The filter settings were also the same
(see Table 3.16). This test is referred to as Concept Test IV.

The results from the calculation are shown in Table 3.17 It is interesting to
note that the T'SAFpps did in fact have an average error which was higher than the
TSAF,p,. Thisindicates that the T'S AF s used the correlation between the noise
components to update the weight vector. This resulted in a biased weight vector.
On the other hand, the two sensor TSAF,,p, appeared to use the cross correlation
to generate an estimate of the noise statistics and remove the biasing effects. It
is interesting to note that the single sensor T'SAF,,p, performed better than the

two sensor T'SAFp s as well. The average error for Concept Test 1 is included {o




confirm that the filter could resolve the forward modeling for the noiseless signals

almost perfectly.

Filter Error (pV)?
Two Sensor TSAFLys: Concept Test 11 7.837
Single Sensor T'SAF,,p.: Concept Test IV 4.023
Two Sensor T'SAF,,p.: Concept Test 111 2.439
Two Sensor TSAFus: Concept Test 1 0.002

et g s Lyt ke ST

Table 3.17. Comparison of the Average Square Error
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3.7 Chapter Summary.

The ultimate goal of this chapter was to test the TSAF in the configurations
to be used in Chapter 4 to verify the filter’s integrity and validate the concept
of estimating human EF with the TSAF. A significant portion of the testing was
designed to isolate problems within specific algorithm and/or in the interaction of
the sub-components. There were several changes made to the software code to

enhance the filter performance. The following presents a summary of these changes:

e 1 Update Algorithm. This algorithm was modified to use an instantaneous
estimate of the signal energy present at the input of the filter. The original
algorithm did not perform as well due to the noise present in the estimate of
the signal energy. The noise was captured by the long memory of the leaky

integrator which then corrupted future updates of the gain constant.

o Tilter Delay. A delay was added to the TSAF adaptation to give the bias
weight 2 “head start”. This delay reduced the adaptation noise which the bias

weight passed to the filter by allowing the bias weight to use the first 20 vectors
before the TSAF was started.

e Additional Bias Weight. An additional bias weight was added to remove the
mean component of the desired signal. This was necessary because the two
stage TSAF removes the input signal mean at the front of the filter and is
isolated from the desired signal. The bias weights provide a zero mean input

and zero mean desired signal to the twn stage TSAF.

To validate the concept of using the TSAF with human signals, a series of test
were performed to simulate the fiiter configurations to be used in Chapter 4. In
addition, simulated EF and EP signals were used with computer generated noise.
The computer generated noise was created with cross correlation to simulate the cross
correlation discovered between the human EEG and human MEG noise components.

The results from Concept Test II and III confirmed the hypothesis that the TSAF,,p,
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would generate a more accurate estimate of the desired signal over the TSAFLys
when there is cross correlation between the noise components. It is also interesting
to note that the single sensor TSAF,.p, had a better average square error than the

two sensor T'SAFp s for the specific tests performed in this Chapter.

In summary, the test performed in this chapter were intended to build confi-
dence in the implementation of the TSAF,,p, and TSAF s filters. Based on the
test performed and the results obtained, the TSAFrys and the TSAF,, p, filters
were shown to perform as expected with no errors detected in the algorithms. Fi-
nally, the concept of estimating human EF using human EP was validated based on

the results obtained from using simulated data.
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IV. Estimation of Human EF

4.1 Introduction

This chapter summarizes the application of the TSAF,,p, and the TSAF s
filters in estimating human EF. Extensive testing was performed in Chapter 3 to
verify that both filters are indeed error free since no standards exist to compare to
the filtered human data. In addition, the TSAFraps and TSAF,,p, were tested in
configurations identical to the those used in this chapter. By modeling simulated

EF using simulated EP, the concept of using EP to estimate EF was validated.

A significant result from the analysis of human EEG and human MEG was that
cross correlation was discovered between the noise components for the limited data
set. The data used for the analysis is the same data used in this chapter. Based on
the results in Chapter 3, one might expect the TSAF,,p, to provide a more accurate
estimate of the human ET signal. With this in mind, the following is a brief overview

of the experiments p~tformed in this chapter:

e Two Sensor T'S# Frps Estimation of Human EF. This experiment uses two
sensors to estimate the EF which is equivalent to saying the filter uses two
separate input signals. The filter input signal is human EP and EEG contained
in the. data file EEG.PRN. The desired signal is the human EF and MEG
contained in the data file MEG.PRN.

o Two Sensor T'SAF;p. Estimation of Human EF. Again, this experiment uses
two sensors, but, the mPa is used to estimate the EF signal. The filter input

file is EEG.PRN and the desired signal is MEG.PRN.

e Single Sensor T'SAF,,p, Estimation of Human EF. The mPa is now used with
one input file which is the human EF and MEG. The filter input signal is also

the desired signal.
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Finally, there are two significant assumptions on which the processing in this

chapter is based:

1. The statistics of the human EEG and MEG noise are stationary. This means
that P, vector need not be time-sequenced. Recall that the estimator generates
the P, vector based on the statistics of pre-stimulus noise. The resulting P,
vector is then used for all the TSAF filters and is not updated until the next
data vector. Therefore, non-stationary noise statistics could degrade the filters

performance.

2. There exists correlation between the human EP and EF jitter components.
This assumption drives the experiments presented in this chapter in that the
correlation between the @; components is what the filter uses to update the
weights. Ideally, one would like signals with highly correlated jitter components

and very little or no cross correlation between the noise components.

4.2. Data Files

There were two data files used iq this chapter that were obtained from AAMRL.
The MEG.PRN file contained human EF and MEG components and consisted of 80
vectors with 100 discret_e sample points in each. Individual vectois contained 0.5
seconds of collection with the first 0.1 seconds being pre-stimulus noise. The sample
rate was 200 kHz which m;aans the first 20 sample points were pre-stimulus and the
last 80 were post-stimulus. The pre-stimulus was noise only and the post-stimulus

contained noise and signal. The EEG.PRN file was in the  -e format and contained

the human EP and EEG.

In keeping with the signal model presented in Chapter 2, the MEG.PRN file
is written as EF; + MEG; = Qqg,; + Ma; + Ny,; where the noise component is MEG
and the EF signal component is composed of the jitter and mean. The same model

is used for the EEG.PRN data file or EP; + EEG; = Q,,; + M ; + N, ;. This is the




notation used to represent Jhe files in the experiment configurations. The x subscript

denotes a filter input and the d subscript a desired signal.

4.8 Two Sensor TSAFms Estimation Human EF

This experiment estimates the EF signal using the MEG.PRN file as the desired
signal and EEG.PRN as the input signal to the TSAFras. With the LMS algorithm
selected, the cross correlation in the MEG and EEG noise components is expected

to bias the weight solution as was shown in Chapter 3.

4.8.1 Configuration. The filter configuration is shown in Figure 4.1 with the
filter parameters in Table 4.1, The filter configuration in Figure 4.1 is identical to
the one used in Concept Test II. Again, the number of taps was based on the filter
size used in Chapter 3 to estimate the simulated EP signal buried in human EEG
noise. The autocorrelation of the simulate EP signal component showed significant
correlation out to & = £7. Therefore, the number of taps was set to 15 and the
number of runs was 10. The number of runs was based on experienced gained from
using the filter and monitoring the instantaneous MSE. For all previous test cases,
the filter converged to a solution in less than 10 runs. The filter is said to have
converged if the MSE did not appreciably decrease with additional passes through

the data ensemble.

4.8.2 Results. The result from this experiment was an output file, YOUT-
EXP1.PRN, which contained 80 vectors with 80 discrete points in each. Each of
the output vectors represented an estimate of the corresponding desired vector. Six
of the output vectors were plotted along with the ensemble average of MEG.PRN
in Figures 4.2 through 4.7. The underlying signal component of the human data is
not known, therefore, the ensemble average of the MEG.PRN file is provided as a
reference to show the deviation of the individual output vectors about the ensemble

average. The corresponding input vector is shown as well.
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EF,+ MEG, !

Wh,d,k

EP, + EEG, /

Figure 4.1. Two Sensor T'SAFy s Filter Configuration

Parameter Setting
Number of Runs 10
Number of Taps 15

Misadjustment 0.5
Mode Non-causal
Algorithm LMS

Table 4.1. Two Sensor T'SAFy ¢ Filter Settings.
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Figure 4.8 compares the ensemble average of the desired signal, E[d}}, to that of
the filtered output signal, E[y,ye ). The plots are identical which might be surprising
at first. However, recall that the two stage filter removes the mean component of
the input signal allowing the TSAF to operate on the zero-mean jitter and noise
components. Williams points at that “...filtering a zero mean process produces a
zero-mean output...”(13:114). The filter output, yx, is then initially zero-mean until
wq,x is added to yx forming the output signal ygyu, k. Therefore, the ensemble average
of the filter output should equal the ensemble average of the desired signal. Now the
filter output signal contains the estimate of the mean component of the desired signal
in addition to the filter’s estimate of the jitter component. The next experiment
uses the mPa to remove the biasing affects of any correlation that might be present

between the noise components.

While a qualitative assessment is not possible as we are working with human
data, observe in Figure 4.2 that the concept appears to be working in the time
interval k = 15...25. That is to say, ihe filter output is inverted as compared to the
corresponding filter input which agrees with the signal model used in Chapter 3 for

the simulated EF.
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Figure 4.4. Two Sensor T'SAFpps Results: Post-stimulus output vector yaug,31-
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Two Sensor TSAFrys Results: Ensemble Averages of
EXP1.PRN and MEG.PRN
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4.4 Two Sensor TSAF,,p, Estimation of Human EF.

S

This experiment estimates the EF signal component using the TSAT filter in

TR

the mPa mode. Based on the test performed in Chapter 3, if there is correlation
between the MEG and EEG, the P, vector will have non-zero components. The

assumption is that the noise is stationary which means the P, vector is time invariant.

4.4.1 Configuration. Figure 4.9 shows the configuration of the filter which
is the same as the previous test except now the mPa algorithm is selected. The ;
P, vector contains the estimate of the cross correlation statistics of the MEG and
EEG noise and is passed to the T'SAF,,p,. The estimate is generated from the 20

pre-stimulus data points contained in each data vector.

4.4.2  Results. This experiment produced an output data file, YOUTEXP2.PRN,
which contained 80 vectors with 80 discrete points. The output file was the estimate
of the EF signal contained in the MEG.PRN. As in the previous experiment, each
output vector represents an estimate of the corresponding desired signal vector. Fig-

ures 4.10 through 4.15 show the same six vectors as used on Experiment I along with

S g 8 st rarE

the ensemble average of the MEG.PRN file. Figure 4.16 compares the ensemble av-
erage of the filter output file to the ensemble average of MEG.PRN to ensure the

filter was not adversely altering the signal. As in the previous experiment, the two

plots are identical.

Another interesting plot is Figure 4.17 which shows the values of the P, vector
at the end of the experiment. It appears that the estimator has detected cross

correlation between the MEG and the EEG noise components which agrees with the

findings in Chapter 3.
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EF, 4+ MEG) 1

EP, + FEG|

-y

Wh,z,k

Figure 4.9. Two Sensor T'SAF,,p, Filter Configuration

Parameter Setling
Number of Runs 10
Number of Taps 15

Misadjustment 0.5
Mode Non-causal
Algorithm mPa

Table 4.2. Two Sensor TSAF,,p, Filter Settings
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Figure 4.11. Two Sensor T'SAF,,p, Results: Post-stimulus output vector yaug,15-
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Two Sensor T'SAF,p. Results: Post-stimulus output vector yqug,a1-
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Figure 4.16.

Two Sensor T'SAF,,p, Results: Ensemble Averages of

EXP2.PRN and MEG.PRN.
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Figure 4.17. Two Sensor T'SAF,p, Results: P, Vector
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Finally, before proceeding to the single sensor TS AF,, pa, six plots follow which
compare the TSAFp s filter output to the TSAF,,p, from the previous two exper-
iments. Clearly the two approaches provide different outputs reflecting the contri-
bution of the P, vector to the estimate of the EF signal in the TSAF,p,. The
conjecture that the TSAF,,p, results are better is only justified based on the simu-

lation results of Chapter 3.
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Figure 4.18.

Comparison of yayg10: Post-stimulus output vector from two sensor

TSAFps and TSAF, p, experiments
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Figure 4.19. Comparison of yguy15: Post-stimulus output vector from two sensor

TSAF s and TSAF,,p, experiments.
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Figure 4.20. Comparison of yaye,31: Post-stimulus output vector from two sensor
TSAFpys and TSAF,, p, experiments.
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Figure 4.21. Comparison of yug45: Post-stimulus output vector from two sensor
TSAFips and TSAF,,p, experiments.
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Figure 4.22. Comparison of yauee2: Post-stimulus output vector from two sensor
TSAFps and TSAF,, p, experiments.
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Figure 4.23. Comparison of ysug70: Post-stimulus output vector from two sensor
TSAFms and TSAF, p, experiments.




4.5 Single Sensor TSAF,,p, Estimation of Human EF

This final experiment uses the TSAF,,p, with a single sensor with the human
EF data for the input and desired signals. Again, this experiment assumes that the

noise statistics are time invariant.

4.5.1 Configuration. The filter configuration is shown in Figure 4.24. The
P, vector now estimates the cross correlation statistics of the MEG noise with itself
and then removes the estimate in the weight update algorithm. The filter settings

are shown in Table 4.3 and the results are presented in the following section.

4.5.2 Results. The results from this experiment was an output file, YOU-
TEXP3.PRN which contained 80 vectors with 80 discrete points in each and was
an estimate of the EF signal component. Six output vectors are shown in Figures
4.25 through 4.30. The ensemble average is plotted to provide a reference along
with the input signal used to generate the filter output. As done previously, the
ensemble average of the YOUTEXP3.PRN file is compared to the ensemble average
of MEG.PRN in Figure # 31 and the plots were identical. The last piece of data for
this experiment is a plot of the P, vector shown in Figure 4.32 which is very similar
to the plot of the autocorrelation of the MEG noise in Figure 3.27. This is expected
as the P, vector represents an estimate of the cross correlation of the MEG noise

with itself in the single sensor case.

The plots of the filter output show that the filter was amplifying the input sig-
nal. This amplificaticn is undesirable and indicates the filter solution was incorrect.
The power of the output signal should have been lower as the filter tries to reduce

the effects of the noise contained in the input signal. The next section analyzes the

single sensor configuration in terms of the P, vector.
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Figure 4.24. Single Sensor T'SAF,,p, Filter Configuration

Parameter Setting
Number of Runs 10
Number of Taps 15

Misadjustment 0.5
Mode Non-causal
Algorithm mPa

Table 4.3. Single Sensor T'SAF,,p, Filter Settings.
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Figure 4.26. Single Sensor T'SAF,p, Results: Post-stimulus output vector ygyg,15.
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Figure 4.27. Single Sensor T'SAF,,p, Results: Post-stimulus output vector yaug 31
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Figure 4.28. Single Sensor T'SAF,,p, Results: Post-stimulus output vector y,y,45.
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Figure 4.29. Single Sensor T'SAF,,p, Results: Post-stimulus output vector yaug,62-
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Figure 4.30. Single Sensor T'SAF,,p, Results: Post-stimulus output vector yqug,70-
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Figure 4.32. Single Sensor T'SAFy,p, Results: P, Vector




4.6 Analysis of Single Sensor TSAF,,p, Performance

The previous experiment used the single sensor T'SAF,,p, to estimate human
EF signals. The resuits indicated that the filter was actually amplifying thc input
signal. This amplification is undesirable as the filter should be reducing the noise
power contained in the input signal. This section investigates the performance of

the single sensor T'SAF,,p, in estimating the human EF.

4.6.1 P, Estimator Revisited. In analyzing the output from the P, estimator,
it was noted that the plot of the P, vector for the single sensor T'S A F,, p, experiment
was similar, but, not identical to that predicted by the autocorrelation of the human
MEG noise performed in Chapter 3. Figure 4.33 compares the P, vector components
to the results from the statistical calculation. Note that the P, values increase
compared to the calculated values as one moves away from the zero tap. The other
point to make is that the P, vector is non-causal with 15 taps and only has values
out to £7. One might expect the two plots to be identicai where they overlap as
both are the autocorrelation of the human MEG pre-stimulus noise. The difference

is attributed to the “windowing” of the data in the statistical analysis as shown next.

The equation used to calculate the cross correlation statistics is the following:

M-1N-
E[d,ka,k_{]— Z Z Jl}'x.’rk-’ (4'1)

J is the vector pointer, M is the number of vectors contained in the ensemble, % is
the time index, N is the number of data points in each vector, and ¢ is the shift
index and ranges from 0...(2N — 1). The equation form of the P, estimator is as

follows:
M-1N-1

Pr = Z Z d; kL5 k- (4.2)
- ’) 0=; 0=k

The & term in Equation 4.1 windows the data vectors. This is best seen when the

shift index is at its maximum value ¢ = 2N — 1 and only a single term results from
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Figure 4.33. Comparison of P, and Autocorrelation of Human MEG noise

the summation over k as all other values are zero. However, this single term is still

divided by N which is the number of data points in the vector.

On the other hand, Equation 4.2 divides the summation over k using the
~— term which results in division by the number of terms which overlap. For the
same case previously considered where ¢ = 2N — 1, the single non-zero term in the
summation over k is divided by N — 2 or 1. Therefore, the P, estimator equally
weights each estimate even though fewer terms are used in the summation. The
question then arises as to which equation produces better result in terms of filter
performance for the special case investigated in this thesis. The answer was obtained
by re-testing the single sensor TSAF,,p, with high variance noise added to in the

simulated EF data to determine the affects to the filter performance.

4.6.2 TSAF,p, Performance. This section presenis two additional test of
the single sensor T'SAF,,p,. The test were designed to determine if windowing

the data vectors improved the filter performance over using the existing estimator
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algorithm. The figure of merit is the average square error using Equation 2.10 from
Chapter 3. A new noise file, NOISE2.PRN, was generated as shown in Appendix E.
The noise was generated with correlation and high variance as compared to computer
generated noise files previously used. The rezson for increasing the variance was to

more accurately represent the SNR of the human data.

The configuration for botii test is shown in Figure 4.34 with the filter settings
shown in Table 4.4. These were identical to those used in the estimation of human
EF. The MSE results from the test are shown in Table 4.5 and clearly indicate the
“window” algorithm had a lower MSE performance than the original estimator. A
plot of the resulting P, vectors is shown in Figure 4.35 and indicates the statistical
algorithm matched the calculated autocorrelation of the pre- stimulus noise exactly,
where they overlap, while the original algorithm was slightly higher. Output vectors
generated from using the different algorithms are plotted, along with the input signal,

in Figures 4.36 and 4.37.
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Figure 4.34. P, Estimator Re-test Filter Configuration. The input is simulated EF
with high variance noise, nq .

Parameter Setting
Number of Runs 10
Number of Taps 15

Misadjustment 0.5
Mode Non-causal
Algorithm mPa

Table 4.4. P, Estimator Re-test Filter Settings
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Figure 4.35. P, Estimator Re-test Results: Comparison of the P, vectors and cal-
culated autocorrelation of the pre-stimulus noise.
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Figure 4.36. P, Estimator Re-test Results: Output Vector yayg6
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Figure 4.37. P, Estimator Re-test Results: Output Vector yaug,21
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4.6.8 Discussion. Based on this limited analysis, windowing improved the
single sensor T'S AF,, p, performance using the simulated EF data with high variance
noise. One might attribute this to the outer taps in the estimator having fewer
samples from which fo estimate the true cross correlation statistics. This results
in those taps having a higher error as compared to the taps close to the zero tap
which see more samples. In this case, windowing the data appeared to reduce the
contribution of the outer taps in the filter update equation and, thus, increased
the filter performance. However, repeating the single sensor experiment using the
new statistical algorithm with the human EF still resulted in the input signal being

amplified.

The single sensor configuration is unique in that the filuer relies upon an a:-
curate estimate of the pre-stimulus noise autocorrelation statistics. In addition, the
statistics are assumed to be time-invariant. The importance of these assumptions
are that }5,, = P,. Any violation of these assumptions results in f’n = P+ P, where
P.x represents the error in the estimate. It can be shown that W = W + w5,
where the weight error bias, W2, equals Ry P, x (13:89-90). In closing, the following

observations were noted during the experiments:

¢ The magnitude of the P, vector from the single sensor experiment was ex-
tremely high as compared to all other test and experiments performed. In this
case, the P, vector may dominant the filter update equation suggesting that
the noise variance exceeds some “threshold” of the filter’s ability to see the

jitter component.

o The error in the P, vector is expected to be higher in the outer taps which use
fewer pre-stimulus data points. Given the magnitude of the P, vector for the
single sensor experiment, the noise in the outer taps may still be significant

even with windowing the pre-stimulus data vector.
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e Any time-variance in the noise statistics in the post-stimulus region will corrupt
the filter solution as the P, vector is not time-varying. The ideal estimator

would continually update even in the post-stimulus region.
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4.7 Chapter Summary

This chapter performed three experiments to estimate the human EF signal

from human EP. The three filter configurations used were

1. Two Sensor TSAFrpms
2. Two Sensor T'SAF,.p,

3. Single Sensor TSAFy,p,

The results from these experiments were data files which contained the 80 output
vectors from each of the experiments. Unfortunately, there are no human EF signals
which are noiseless to compare with the filter output. Therefore, the ensemble aver-
age of the desired signal, MEG.PRN, was included in the plots to show the deviation
of the output signal about the mean. In addition, the input signal was included to

show the reader what the signal looked like before filtering.

Based on the results from Chapter 3, one might reasonably assume that the
TSAF,,p, would produce a more accurate estimate due to the bias influence of the
cross correlation between the MEG and EEG noise. A qualitative assessment of the
TSAF,,p, performance using the human EF is not possible because the underlying

signal is not known.

Finally, the single sensor T'SAF,,p, experiment using human EF resulted in
an output signal which was apparently amplified. This indicated the filter solution
was unacceptable and was further analyzed by testing the single sensor TSAF,,p,
with simulated EF and high variance noise. The results from the test indicated that
windowing the pre-stimulus data improved the filter performance but did not resolve
the amplification problem. Essentially, this anomaly is left for future research with

the cause attributed to three hypothesists:
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1

1. The magnitude of the P, vector resulting from the autocorrelation of the MEG
pre-stimulus noise dominates the filter update equation. This exceeds some
“threshold” of the filter’s ability to see the jitter component.

2. While windowing improved the filter performance, there may still be consid-
erable error contained in the outer taps of the P, vector due to the limited
number of data points these taps use. ;,

3. The noise in the post-stimulus region may, in fact, be slightly time-varying.
This would corrupt the P, estimate as the statistics are assumed to be time- 1
invariant. "
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V. Conclusions and Recommendations

5.1 Conclusions

This thesis was a direct application of the Ferrara TSAF using the LMS algo-
rithm and the Williams mPa. The filters were used to estimate human EF signals

using human EP. The conclusions from this research effort are the following:

e The input signals to the filter can be modeled as the sum of three uncorrelated
components, the jitter, mean, and noise. This was developed in Chapter 2
using the simulated EP data which contained human EEG noise. This result

greatly enhanced the understanding of the signal processing performed by the
TSAF filters.

» Based on a limited data set, cross correlation was discovered between the hu-
man EEG and human EEG noise coinponents. This was based on a siatistical
analysis of the pre-stimulus noise contained in the human data files obtained
from AAMRL. This prompted a series of test which compared the TSAF,,p,
performance to the T'SAFars when there is cross correlation between the noise

components.

o The TSAF,, p, produced a better estimate of the desired signal over the TSAFums
when the input and desired signals contained correlated noise components. The
conclusion was based on using a forward model to create simulated EF from
the simulated EP data. In addition, computer generated noise files were used

which contained cros co-relation.

Other significant observations were made during the testing phase of the filters

resulting in modifications to the code are the following:

o The bias weight in the first stage passed adaptation noise into the filter struc-

ture which caused some of the filters to diverge from the desired solution. The
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filter adaptation was delayed to allow the bias weight to work on the first
20 vectors before the TSAF adaptation started. This reduced the adaptation
noise passed to the filter allowing all the TSAF filters to converge to the desired

solution.

o The p; update algorithm was modified to calculate the gain constant based
on an instantaneous estimate of the signal energy present at the filter input.
The original algorithm used a leaky integrator stage which captured any noise
passed to it from the estimate of the signal energy. This noise was then used in
future updates of pi which caused the gain constant to decrease in magnitude
slowing the convergence of the filter. The instantaneous update appeared to

improve the convergence speed to the desired solution.

5.2 Recommendations

There are several recommendations which might make a reasonable thesis topic
in themselves or good topics to include in related research. The recommendations

are as follows:

1. This thesis analyzed a limited sample of human EEG and MEG data noting
there was cross correlation between the noise components. One might further
investigate these findings by analyzing the MEG and EEG noise from a much
larger sample set and using different subjects and/or different placement of the

SENnsors.

2. This thesis used simulated EF and EP buried in simulated EEG and MEG

noise. A follow on thesis should further test the filter using simulated EF and

EP buried in human EEG and human MEG. The purpose being to more closely

simulate the signal-to-noise and correlation relationships between the human

signals and noise.




3. The performance of the single sensor T'SAF,, p, could be quantified in terms of
MSE as a function of the signal-to-noise ratio. The purpose being to determine
if the single sensor T'SAF,,p, exhibits a threshold affect as the magnitude of

the P, vector components increase. One might also investigate using different

windowing techniques in the P, estimator and study the affects of increasing
the number of pre-stimulus data points. For example, generate a 15 tap P

vector using 30 to 40 pre-stimuiuc samples instead of the 20 used in this thesis.

4. While signal-to-noise is one performance criteria, another is convergence speed.
Therefore, a follow on study should investigate Figures 3.8 and 3.9 to gain ad-
ditional insight into the effects of the Counter performance versus the leaky
integrator. Given the filter structure is composed of several components which
all interact, additional analysis of the two stage filter might reveal other en-

hancements to speed the convergence.

5. Along the lines of the previous item, the code for this program could easily
be oplimized to increase the execution speed. In addition, a user interface
would be a nice to have as well. Presently, the code is modified for different

configurations and then re-compiled. The program is initialized with variables

which could easily be set from within a user interface. Finally, with the speed

of PC’s increasing, a graphic driver displaying the instantaneous mean-square 3
3
error would allow monitoring the filter performance during the program exe-
;
cution.
R

6. Finally, one might investigate using a neural network to improve the filter
performance by selecting the optimum filter solution from a set of solutions for !

each instant in time.

5-3



Appendix A. Definition of Statistics

A.1 Introduction

The purpose of this appendix is to define terms and describe the statistical
calculations referenced through out this thesis. The terms defined are: mean, mean-

square, ensemble average, and ensemble mean-square.

A.2 Definitions

Let yx be a data vector with NV data points where k is the time index. The
vector represents data points observed from a single experiment or random process

over time. The time average or mean of Y is defined as

12

1
== Uk (A.1)
NS

It 1s important to note that if N is finite, Equation A.1 is only an estimate of the
mean. However, for the purpose of this thesis, the number of data points is considered

to be large enough such that:
LS (A2)
g~y =—> Uk A2
N k=1
Continuing on and using the same data vector, the mean-square of y is defined as
- 1 &,
V=5 2 Uk (A.3)
k=1

Both of these are commonly used in calculating the statistics of time sequenced data
(1:3-5). The point to make is that the statistics were calculated over time or “along”

the process. We are now ready to define the ensemble average which is calculated

“across” the process.




The experiment is now repeated M times still making N observations during
each experiment. The observations are collected and stored in the data array y,
which now has M rows and NV columns. k is still the time (column) index and j is the
vector (row) index. This data array then represents the ensemble of the experiment
(7:114-115). When dealing with ensembles, the statistics of interest are the ensemble
average and the ensemble mean-square. These are calculated “across” the process
at fixed points in time. Therefor, the ensemble average is calculated by columns in

the data array or the ensemble average is

1 M
Ely] = 772 vs (A.4)

=1

where k = 1,2,...N and indicates that the ensemble average is time sequenced and
with N values as a result of the calculation. Note that the averaging is done by
columns. In this thesis, the resulting values are represented in vector notation.

Therefor, the N results from Equation A.4 can be written as
E[Y} = [Ely:) Elya)... Blyn])” (A.5)
where Y is a vector with N data points. The ensemble mean-square is then

1 M
Elyl) = 372 Vi (A.6)

=t

The notation in this thesis uses E[yx] as the ensemble average and E[y?] as the

ensemble mean square or variance of the k** column in the data ensemble.
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Appendix B. Bias Weight Solution

B.1 Introduction

This Appendix presents the derivation of the equation for the TSAF optimum
weight solution with the bias weight. This derivation relies upon the following iden-
tity:

-1

A B
¢ D

A"l 4 AT1BV-ICA™! —A71BV!
-V-1cA™? y-1

(B.1)

where V = (D — CA™'B) and the determinants of A and V must be non-zero. The
proof of this identity can be found in (13:121-123). Only the result is used here.

B.2  Optimum Weight Vector Solution

The derivation begins with the augmented optimum weight vector in Equation

2.27 which is rewritten below:

-1
mg.k

Py

(B.2)

aug,k

.| oM
" | My, R

Applying the identity in Equation B.1 to Equation B.2, the optimum weight vector

solution is simplified as follows:

(I + 1M MY (17 MTETY
- P 1M1 F;:l

™,k

Py

W‘ k=

aug,

(B.3)

where




D = R (B.7)

Fy. is the autocorrelation matrix of the input signal with the mean removed. One

can derive F} from the definition of V which results in

V = D-CA™'B

= Rp— M7 ' MY
= Ry— MiM{
= Fy (B.8)

Performing the vector multiplication and grouping terms:

Wt

aug,k

may + map M FTI My, — MTFE™'P,
i —mas P My + Py
mak + Mj FH (mapMy — Py)

(B.9)
F[l(—-md,kﬁ/fk + Pk)

In order to proceed, the equation for the cross correlation vector must be

expanded and written in terms of the individual signal components. This is presented

below:

Py

E[diX]

Eldi(My + Qi + Ny)]

Eldi M) + E[diQx) + E[deNi]

E[di)| E[Mi) + EldiQx] + Edi) E[Nk)

ma My + Eldr Q) (B.10)

The last line is obtained by recalling that the noise component of the input signal

is zero mean and uncorrelated with the desired signal. In addition, the mean of

B-2
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the input signal is uncorrelated with the desired signal and the expectation of the
product equals the product of the expectations. Finally, Equation B.10 is further

reduced by writing d in terms of its components,

P = maiMy + E[diQy)
= marMi + E[(mak + qaj + nak)Q4)]
= mypMy + ElmaxQi] + Elga Q] + E[na Q]
= marMi + E[mar) E[Qi] + ElgarQr] + Elna ] E[Q4]
= mapM + E{qarQs)
= mapMi + Qax (B.11)

where Qux = E[qa1Qx) and is the expected value of the correlated jitter or random

components of the input signal and the desired signal.

Now substituting this result into Equation B.9 for the quantities in the paren-

thesis, the final form of the optimum weight vector solution is obtained:

~ MTF?
we=| | = | T _1‘ k Qan (B.12)
Wi F7iQay

This is the solution presented in Chapter 2.
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Appendix C. Optimum Weight Vector Solution.

C.1 Introduction.

This appendix derives the filter solutions for the case when the input and
desired signal are the same (i.e. z; = di). The solutions are developed using a
three tap filter for three different cases: causal filier without noise in the filter input,
non-causal filter without noise in the filter input, and non-causal with noise added to
the filter input. In general, a causal filter processes only current signal values and/or
past. Often the terms realizable and causal go hand in hand (4:38). A non-causal
filter is a filter which not only processes current and/or past signal values, but, future
values as well (5:41). For this thesis, the entire event has already occurred and the
sample points are stored in a data -vector, therefore, future values are the next sample
point(s) in the vector relative to where “now” is. For the TSAFLys and TSAF,,p,

filters, “now” is the zero or center tap of the filter, wo.

C.1.1 Causal Filter Solution. Given a three tap causal filter, one uses the
definition of the autocorrelation matrix and cross coiielation vector establish the

following optimum weight solution:

W* = R7pP .
E[fl)o:l)o] E[.’lf().’li..]] E[wox_z] E[do!l)o]
= E[(I)_]IL‘()] E[IB_](B_I] E[$_1$-2] E[do:l)_.]] (Cl)

Elz_2z0] Elr-2x-1] Elr-2z_,) Eldoz )
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To simplify the development of the solution, the following matrix and vector nota-

tions are presenten:

-1

a b ¢ a
W = [b d e b (C.2)

c e f c

where

a = E[:Bo.’b‘o] (03)
b = Elzoz-1) (C.4)
¢ = EBlzoz-q (C.5)
d = E(.’B-;(L’..]] (06)
e = Elr_jz-,) (C.7)
f = E[:B_Q:B_g] (08)

An important note is that the order of the product within the expected value operator
is not important or E[zoz_,] = E[z.170). In addition, the input and desired signal
are the same and dy = xo which results in the cross correlation vector containing the
same values as the top row of the R matrix. The next step is to invert the R matrix

and perform the vector product which produces the following:

[ (df —c?) (ce—bf) (be—cd) || a

1
w* = Dol R (ce=bf) (af —c*) (bc—ae) || b
(be ~ed) (bc—ae) (ad—b?) || ¢
adf — ae? 4 bee — b2 f + bee — c?d
1
= Puak ace — abf + abf — bc® + be? — ace

abe — acd + b*c — abe + acd — b%¢
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1
" DetR 0
0

1

0

where Det R = adf — ae? + bce — b*f + bce — c*d. The inversion assumes the
determinant of R is non-zero. This is not a surprising result given the input and
desired signal are the same because the best the filter can do, in this case, is model
a straight wire and pass the input signal without any alterations. This is the result

for a causal filter. The derivation for a non-casual filter now follows.

C.1.2 Non-Causal Filter Solution. The nor-causal filter has weights which
see past and future values. For this thesis, the non-causal filter is always symmetric
about the center weight, wor. This development will again use a three tap filter
which means that the filter uses only one future input. The input vector is then
X = [21 20 2-1)7 and the optimum weight solution is written slightly different from

Equation B.1 or

W* = R'P
-1
E[(I)1.’B]] E[J:]xo] E[IBliB_]] E[do:El]
= | Elzoz:]  Elzozo] Eleoz_] E|doo) (C.10)

Elz_yz:1] Elz-1z0) Elz-12-1] Eldyz 1]
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Again, dy = @, and one to one substitutions are made to simplify the expansion of

the matrix inverse. Equation C.10 then becomes the following:

I-a b ¢ B b
W = b d e d (C.11)

c e [ e

where

a = Elzm)] (C.12)
b = Elz1 (C.13)
c = Bz (C.14)
d = Elzozo) (C.15)
e = Blzoz.] (C.16)
[ = Elearo) (c.17)

The important difference to note is the change in the P vector. To ensure the reader
sees the time shift from using a non-causal filter, the substitutions used with the P

vecior are presented with the input signal equal to the desired signal:

Eldoay] Elzo) b |
P= E[doxo} = E[Zomo] =1{d (018)
E{dofﬂ_]] E[.’Eo!b‘,.]] 4

The non causal filter has shifted the input signal, l.owever, the desired signal is not
shifted and the cross correlation vector now contains the values in the second row

of the R matrix. Inverting the matrix and performing some algebra, the three tap




non-causal solution is the following:

(df —€?) (ce—bf) (be—cd) b
we = DR (ce—bf) (af —c*) (bc—ae) | | d
(be —cd) (bc—ae) (ad—10%) || e

bdf — be? + cde — bdf + be? — cde

1
= Pa R bee — b2 f + adf — c*d + bee — e%a
b%e — bed + bed — ade + ade — b%e
0
= 1 Det R
= Dar|”®
0
0
= |1 (C.19)
0

where DET R = bce — b?f + adf — c®d + bce — e%a and is assumed to be non-zero.
This shows again that when the input and desired signal are the same, the filter

converges to a straight wire where wo = 1 and all other taps are zero.

C.1.8 Non-Causal Filter Solution With Noise. This section derives the filter
solution for the special case where noise is added to the input signal, however, the
desired signal is noiseless or

Tk = Gk + ok (C.20)

and

dr = q (C.'Zl)

The mean components are absent because we have assumed that the bias weights
have perfectly estimated the mean components of the input and desired signals and

removed them. The next step uses similar substitutions as those already presented
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to write the optimum weight vector solution in terms of the autocorrelation matrix

and the cross correlation vector or

-1

a b c E[dox1]
W = b d e E[do'L‘o]
c e f E[doz_4)

where

¢« =Enz)= Elg+n
b = E[z120]l = E[q190 + n1no)
¢ =E[ziz)= Elpg-1+nin-i]

d = Elzoze) =  Elg5+ng
e = E[.’Eo.’l)-]] = E[(]oq_l + non_]]
f = Elz_z] = Blg2, +n2)]

(C.22)

(C.23)
(C.24)
(C.25)
(C.26)
(C.27)

)

(C.28

The cross terms are zero because the signal components are assumed to be uncor-

related and zero mean as was shown in Chapter 2. Therefor, the expected value

of the cross terms in the product is zero. The P vector is now written in terms of

Equations C.24, C.26, and C.27 or

E[dofl)]]
P = E[do:to]
i E[dom_ll

- Elgo(q1 + m1))] ]

= | Elgo{ge + no))
] Elgo(g-1 +n-1)]




b - E[nx,onx,l]
= | d= E[ni]

e—F [nx,Onx,—l]

b— ng
= d—ny (C.29)
e— N,

The final form of the solution is obtained by performing the inverse operation on the

autocorrelation matrix and breaking the P vector into two separate vectors or

- (df — €*) (ce—bf) (be—cd)- -‘b—nb
w* = DeltR (ce = bf) (af —c?) (bc— ae) d—ng
| (be—cd) (bc—ae) (ad- b?) | [ e—ne
[ (df —e®) (ce—~bf) (be— cd) 1(s ny
= Delt 7 (ce—bf) (af —¢c?) (bc— ae) d|—| ng ||(C.30)
| (be—cd) (bc—ae) (ad- bv?) | \le Ne

Performing the vector multiplication and using the results from Equation C.19, the

previous expression is simplified to the following:

0 (df —e*) (ce—bf) (be—cd) | | n
W = ~ DR (ce —bf) (af—¢c?) (bc—ae) | | na (C.31)
0 I_ (be —cd) (bc—ae) (ad—-1¥%) | | ne

Equation C.31 shows that the resulting weight vector will try and reduce the contri-

bution of the noise in the filtered output while enhancing the signal component.
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Appendix D. Derivation of the mPa

D.1 Introduction

This appendix develops the Williams mPa from the Widrow LMS algorithm.
The development follows that used by Williams and presents two derivations. The
first derivation shows the effects of the signal noise component in the weight solution

when a single sensor is used. The second derivation is the mPa (13).

D.2 The mPa

The derivation starts by expanding the error term,e, in the LMS algorithm

along with the filter output, yaugx

Wit = Wi+ 206X
= Wi+ 2u(dk = Yaug k) Xk
= Wi+ 2p(qar + max + nak — Youg k) Xk
= Wi+ 2u(qan + nag + max — (XF Wi + w0 )) Xx
= Wi+ 20((qup + nap) X — X{ Wi Xi) (D.1)

The last line was obtained by assuming that the second bias weight has ideally
estimated the mean component of the desired signal (max = wyp ) and removed it
from the update equation. Therefor, in using the signal model presented in Chapter
2, dr. = qax + ryx and is zero mean (13:86). This also applies to the input signal
as the bias weight in the first stage has removed the mean component of the input
signal. Now as k approaches infinity, the filter is assumed to reach a point in time
where E[Wyy1 — Wi] equals the zero vector. Subtracting Wi from both sides and

applying the expected value operator to Equation D.1 results in the following:

EWkp — Wi] = 20E((qux + nap) Xe) = E[XT Wi Xi]




0 = E[(qar +nas)(Qx + Ni)) — B{(Qx + Ni)(QF + N{)W,
0 = E[garQu) + ElnaiN:) — (E[QxQF] + E[NeN{ Wi
P+ P — (By + RBn) Wi (D.2)

o
il

The cross product terms are zero because the signal components are assumed un-
correlated and zero mean. The second line was obtain by noting that X7 Wy is a
scalar, therefor, (XF W)Xy = Xx(XFW,). In addition, the W was removed from
the expected value assuming the filter has settled to a solution and the weight vector

is not changing. Solving Equation D.2 for the weight vector yields:

WE# = (Ry+ Ru)i"(Pos + Pui)
= (Ry+ Ra)g' Py + (Ry + Ry); ' Pa
= Wp+ WP (D.3)

Williams states that “ ... any correlation between the noise components biases the
weight solution away from the desired solution, W}, by the amount WP » (13:85).
He further points out that for the single sensor case where the input signal is also
the desired signal, the minimum MSE is achieved when the zero tap is one and all
the other taps are zero (13:85). The filter then acts like a straight wire as was shown
in Appendix D. Therefor, the LMS algorithm must be modified to prevent the filter

from just passing the input signal along with the noise.

The mPa is obtained by noting that in a single sensor configuration the desired
noise component is also the input noise component. Therefor, if an instantaneous
estimation of the noise, 7i4%, was known, the estimate could be subtracted from
the actual noise component in the filter update. This estimate is incorporated into

Equation D.1 and reduced as follows:

Wisr = Wi+ 22[(qak + nap — fap) Xi — X7 Wi Xy
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= Wi+ 2u(qa + nak — XT W)Xy — 2pfian Xi
= Wi+ 2peXi — 2png 1 X (D.4)

For the ideal case where the estimate equals the actual noise component, n4x = fiqx,
the noise term present at the start of Equation D.2 will go to zero and the bias term
in Equation D.3 will then go to zero. This further means that the input signal and

desired signal are perfectly correlated as shown below:

d. = qe+np—ng

= g (D.5)

Williams points out that the filter must have perfect knowledge of the instantaneous
value of the noise component at each point in time. It is very unlikely that an
instantaneous knowledge is achievable (13:86). However, an estimate of the average
value might be acceptable. For the mPa, the average knowledge is Elngt X} and
the estimate is then E[f4xXk]. Continuing with Equation D.4 and substituting in

the estimate of the average produces the following:

Wipn = Wi 2uer X — 2ung 0 Xy
= Wi+ 2pe Xy — 2 E (g p Xi]
= Wi+ 2pe:Xi — 2Pk (D.6)

P, i is the cross correlation noise vector which is dependent on time as seen by the
k index and contains an estimate of the noise statistics. If the noise is assumed to

be stationary, the k index can be dropped and the mPa algorithm is then
Wi = Wi, + 2uer Xy — 2uP, (D.7)

Equation E.7 is the algorithm implemented in this thesis. The statistics for the P,
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vector are estimated from pre-stimulus noise which is detected and recorded prior
to the application of the stimulus (13:89). Using the assumption that the noise is
stationary, the P, vector is not a function of time and is identical for all 50 time-

sequenced filters in the TSAF.
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Appendix E. Computer Generated Data Files

E.1 Introduction

The purpose of this appendix is to show how the computer generated data files
were created. The routines to generate the files were implemented in Turbo Pascal.

The files discussed here are the following:

o AWGN,

AWGN;

SIM.EEG

SIM.MEG
NOISE.MPA

o NOISE2.PRN

E.2  Additive White Gaussian Noise.

Figure E.1 is a block diagram of the AWGN generator used to create AW GN.
The routine generates a signal number according to the algorithm shown. N is
the number of times the random number generator is called. The summing routine
collects N samples and outputs a single number. The entire process is repeated for
each point in the data ensemble. The AWGN, file contained 100 data vectors with
50 sample points in each vector. Therefor, the AWGN generator was called 5000

times. The resulting data file was zero mean and unity variance. In addition, the

data file is uncorrelated which is a property of AWGN.

The AWGN, file was generated from AW GN, as defined in Equation E.1. The
routine essentially flips the data within the vectors and then reorders the vectors

in the ensemble. An alternaie approach is to use a different seed for the AWGN
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Figure E.1.

Random Number Generator ‘
v 7
Tio'ri— N
AWGN
Additive White Gaussian Noise Generator: The output is a single
value. Repeated calls to this routine will generate an AWGN signal
with zero mean and unity variance.
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generator. However, Equation E.1 proved satisfactory.
AWGNI’J',}; = AWGArQ,j_(M__l)’L-_(N._l) (El)

The result was that AWGN, was zero mean and unity variance and uncorrelated

With AWGNO

E.8 Simulated EEG and MEG Noise

The noise files in this section were created with correlation and cross correla-
tion. Figure E.2 is the block diagram of the routine which generated the SIM.EEG
and SIM.MEG noise files. Each file contained 100 vectors with 70 points in each
vector. The first feedback loop spreads correlation within the incoming AWGN. The
second feedback loop then creates the cross correlation between the two files. The
0.8 value spread correlation within the file to simulate the spreading observed in the

autocorrelation of the human MEG pre-stimulus noise from Chapter 3.

E.4 NOISE.MPA and NOISE2.PRN

The NOISE.MPA file was the same file as SIM.EEG. The name was different
so as not to confuse the reader. The important characteristic of the NOISE.MPA is
the correlation within the data file which was generated to stress the P, estimator.
The last noise file NOISE2.PRN was created with high variance as shown in Figure

E.3. The multiplier was used to increase the power in the signal resulting in a lower

SNR when added to the simulated EF.
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AWGN

Nz k

(0.8){2~"

Figure E.2. Create Correlated Noise Components

SIM.MEG .I NOISE2.PRN

Figure E.3. Create High Variance Noise
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Appendix F. Program Listing and Description

F.1  Introduction.

This appendix contains the program listing for the TSAF and mPa filters. The
code is in Pascal and was created, edited, and debugged using Borland Turbo Pascal
5.0. An effort was made to design a modular program to facilitate debugging and
enhance the readability. Variables and procedures were labeled with sufficient size
to describe the variable and the function of the procedure. With this in mind, the
following sections provide a brief overview of the main program loop and selected

procedures.

F.2 Main Program.

The main program is a loop which is repeated based on the number of data
vectors and the number of runs selected. The first procedure, clear_arrays_vectors,
clears all the data arrays and vectors as Pascal does not initialize these when they are
declared. The next procedure, initialize_variables, initializes all the filter parameters
which are variables within the program. A “nice to have” would be a procedure to

prompt the user to input the variables from the keyboard.

Next, the driver opens the necessary disk files for writing and reading and then
proceeds to load data into the data vectors. This program is designed to process
data in vectors while several disk files remain open during the program execution.
The input files for the signal, X, and desired signal, d,, are open during the entire
program and are only closed at termination or to at the start of a new run. The
idea behind this is that using vectors frees up a great deal of memory. In addition,
the array size is limited in Pascal which means a heap pointer is required for larger
arrays. To simplify the program, data is read in a vector at a time while the input
files remain open. This allows an unlimited number of vectors to be processed and

lets Pascal do the bookkeeping for the data pointer.
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With data loaded, the program enters a nested loop to update each of the
TSAF filters. This loop updates the output, error and gain vectors along with the
weight array. Once through, the execution begins with the loading of the next data
vector and the loop repeats. This is a simplified overview and the interested reader

is invited to peruse the program listing for additional details.

F.3 General Information.

This section presents information to needed to understand the code. First,
all the loops indexes are zero based which means they start at 0 and terminate at
N —1 where N is the number of desired iterations. Second, the single letter integers
are used as global loop pointers. This means that a procedure uses the variable
without saving or restoring the values. Third, the three flags used in the program
are mpa.flag, single_sensor.flag, and causal.flag. An integer 1 means the flag is
set and the option selected. As an example, if causal_flag = 1, then the filter is
causal, otherwise, the filter is non-causal. Finally, there are no nested procedure calls
which means only the main program calls a procedure. This is intended to enhance

the readability of the program.

F.J Program Listing.

This is the Turbo Pascal 5.0 listing of the TSAF and mPa program.

Program Time_Squenced_Adaptive Filter;
Uses CRT, Printer;

Var
x_input_vector,
d_inpet_vector,
y-output_vector,
bias_weight _vector,
bias_d_weight_vector,
e_error_vector,
pre_x_input_vector,
pre_d_input_vector,
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p.vector,
gain_mu_vector

avg_weight_acray,
weight_array

filter_select,
filter_size,
filter_start,
delay,
number_data_vectors,
number_of_runs,
run_counter,
mpa_flag,
single_sensor_flag,
causal_flag,
post_data_size,
pre_data_size,
data_pointer,
i,j.k

sum_exrrox,
leakage,
gain_mu,
gain_mu_error,
mis_adjustment,
new_gain_mu,
mu_update_gain,
p.error,
temp_var_x,
temp_var_y

temp_str,
x_input_filename,
d_input_filename,
w_output_filename,
e_output_filenane,
y.output_filename

x_input_file,
d_input_=£ile,
w_output_file,
e_output_tile,
y_output_file

-~

: Array[0..80] of Real;

: Array[0..80,0..20] of Real;

: Integer;

: Real;

:String;

: Text;

1

Procedure initialize_variables;

Begin
x_input_filename
d_input_filename

1= ’d:sim_ef.prn’;

:= ‘c:\tp\sig _files\sim_ef10.prn’;
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w.output_filename := 'diwout.prn’;

e_output_filename := ’dieout.prn’;
v_output_filename := ’d:iyout.prn’;
post_data_size := 50;
pre_data_size = 20;
numbexr_data_vectors 1= 100;
filter_size 1= 15;
numbex_of_runs := 5,
filter_start 1= 20;

leakage = 1,03
mis_adjustment = 0.15;
mu_update_gain 1= 1.0;
causal_flag := 0;

mpa_flag = 0;
single_sensor_flag = 03

sum_exrroxr = 0;
Textbackground(blue);
Textcoler(yellow);

End;

{- — - }

Procedure open_input_disk_files;

Begin
Assign(x_input_file,x_input_filename);
Reset(x_input_file);

If single_sensor_ilag = 0
Then
Begin
Assign(d_input_file,d_input_filename);
Reset(d_input_=file);
End;
End;
{ }

Procedure open_output. disk_files;
Begin

Assign(w_output_file,w_output_filename);
Rewrite(w_output_file);

Assign(e_output_file,e_output_filename);
Rewrite(e_output_file);
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kssign(y_output_file,y_output_filename);
Rewrite(y_output_file);

End;

{ —— }
Procedure write_y_vector_to_disk;

{Purpose: Write selected vector to disk. This routine assumes the file
is open for output and appends the vector to the text file.}

Begin
For i:= 0 to (post_data_size ~ 1) Do
Begin
Writeln(y_output_file , i, ’ ’, y_output_vector[i]);
End;

End;

{- }

Procedure write_weight_array_to_disk;

Label
exit_write_to_disk;

Begin
If run_counter < (number_of_runs - 1)
Then goto exit_write_to_disk;

For j := 0 to (post_data_size - 1) Do

Begin

For i := 0 to (filter_size - 1) Do
writeln{w_output_file,weight_array[j,i]:0:5);

End;

exit_write_to_disk:

End;

{--- 3

Procedure reset_disk_files;

{Purpcse: Moves the file pointer to the start of the file. A1l cubsequent
reads start at the beginning of the file.}

Begin
Reset(x_input_file);




If Single_sensor_flag = 0
Then Reset(d_input_file);

End;
{ 3
Procedure print_avg_weight_array;
Begin
For i := 0 to (post_data_size - 1) Do
Begin
write(Lst,i,? ?);
For j := 0 to (filter_size - 1) Do
Begin
write(Lst,avg_weight_array[i,jl:7:4,’ ?);
End;
Writeln(Lst);
End;
Writeln(Lst,Chr(12));
End;
{- e -}
Procedure close_input_disk_files;
Begin
Close(x_input_file);
If single_sensor_flag = 0
Then Close(d_input_file);
End;
{ -~-}

Procedure close_output_disk_files;

Begin
Close(w_output_file);
Close({e_output_file);
Close(y_output_file);
End;

{

Procedure load_input_vectors;

Begin
For i := 0 to {post_data_size ~ 1) Do
Begin
ReadLn{(x_input_file , temp_var_x, x_input_vector[il);
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If single_sensor_flag = 0
Then ReadLn{d_input_file ,temp_var_x, d_input_vector[il)
Else d_input_vector[i] := x_input_vector[il;

End;

End;

{ 3
Procedure load_pre_input_vectors;

{Purpose: Load the pre-stimulus data into the appropriate vectors. If the
data files do not have pre-stimulus data, then pre_data_size should

be set to O !!1.}
Begin
For i := 0 to (pre_data_size - 1) Do
Begin

ReadL..(x_input_file, temp_var_x, pre_x_input_vector{il);

If single_sensor_flag = 0
Then ReadLn(d_input_file, temp_var_x, pre_d_input_vector[il)
Else pre_d_input_vector[i] := pre_x_input_vector[il];

End;

Procedure test_filter_size;

{Purpose: to make filter_size odd and set DELAY. Making the filter size odd
simplifies the algorithms for a non-causal filter because the filter
is symetrical about the center tap. Also,

DELAY is set to filter_size if causal, otherwise it is the number
of taps to either side of the center tap.}

Begin
temp_var_x := Frac(filter_size/2);

If temp_var_x =0
Then filter_size := filter_size + 1;
If causal_flag = 1

Then delay := <filter_size ~ 1

Else delay := (filter_size - 1) Div 2;

End;




Procedure update_screen;

Begin

Ii data_pointer = 0 Then

Begin
ClrScr;
GotoXY(1,2);
Writeln(’ Filter Size: ’,filter_size);
Writeln(’Number of Runs: ’,number_of_runs);
Writeln(’ Causal Flag: ’,causal_flag);
Writeln(’ mPa Flag: ’,mpa_flag);
Writeln(’ Misadjustment: ’,mis_adjustment:0:3);

End;

GotoXY(1,8);

Write(? Working on Run #: ’,’<’,run_counter + 1,’> ),
GotoXY(1,10);

Write(’Processing Data Vector: ’,’<’,data_pointer,’> ’);
GotoXY(1,12);

write(’ Variance Error: ’,’<’,sum_error:0:4,’>’);
End;
{mmmmmm e }
Procedure update_screen_2;
Begin
Textcolor(yellowt+blink);
GotoXY(1,8);
Write(’ Filtering’);
Textcolor(yellow);
GotoXY(1,10);
Write(’Processing Data Vector: ’,’<’,data_pointer,’> ’};
End;
{::::::::::::::::::::: Procedures for gain_mu_vector =============:=:==:=:=}

Procedure update_gain_mu_vector;

Begin
gain_mu_vector[filter_select] := mu_update_gain * new_gain_mu;

Procedure calculate_new_gain_mu;

{Purpose : To calculate the gain constant used in the weight updates. This
procedure scales the gain constant using the input signal energy
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and the number of filter taps.}

Var
variance : Real;
Label
Skip_New_Gain_Loop;
Begin
variance = 0;
For i := 0 to (filter_size - 1) Do
Begin
If ( filter_select - delay + i < 0)
ox
( filter_select ~ delay + i > ( post_data_size - 1))
Then
GoTo Skip_New_Gain_Loop;
variance := variance + .
Sqr(x_input_vector[filter_select - delay + il);
Skip_New_Gain_Loop:
End;
variance := variance / filter_size;
nevw_gain_mu := (mis_adjustment) /
(filter_size*(variance + 0.001)*(run_counter + 1));
End;
{=zzss=zzzssszzzzzzz Procedure for bias_weight_update s==s=c=ssssszsszssssc ==}

Procedure update_bias_weight_vectors;

{Purpose: Estimate the mean of the input signal and desired. The weight
of the error is decreased with each data vector. If the filter is
doing multiple runs, then the bias weight is not updated after the
first run and remains fixed for all additional runs.}

Begin
If run_counter = 0O
Then
For i := 0 to (post_data_size ~ 1) Do
Begin
bias_weight_vector[il := bias_weight_vector[i] +
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(2.0 x 0.5/

(data_pointer + 1)) *

(x_input_vector[i] - :
bias_weight_vectox[il);

bias_d_weight_vector[i] := bias_d_weight_vector[i] +
(2.0 * 0.5 / !
(data_pointer + 1)) *
(d_input_vector[il-
bias_d_weight_vector[il);

End;
End;
{ }
Procedure remove_bias_from_input_vectors;
Begin
For i := 0 to (post_data_size - 1) Do
Begin
x_input_vector[i] := x_input_vectorfi] - :
bias_weight_vector[il; ,
d_input_vector[i] := d_input_vector([i] -
bias_d_weight_vector[il;
End;
End;
{=========z===z=zz== Procedures for filter updates ======= ===}

Procedure update_y_output_vector;

Var
sum_var : Real;

Label end_loop;

Begin
sum_var := 0;

For i:= 0 to (filter_size -1) Do
Begin
If (filter_select ~ delay + i < 0)
or
(filter_select - delay + i > (post_data_size - 1))

Then Goto End_Loop;
sum_var := sum_var +

veight_array[filter_select, i] *
x_input_vector[filter_select - delay + iJ;

End_Loop:




End;

y_output_vector[filter_select] := sum_var;
End;

{ -

Procedure add_bias_to_y_vector;

Begin
For i := 0 to (post_data_size -1) Do
y_output_vector[il := y_output_vectorl[il +
bias_d_weight_vector[il;

Procedure updace_e_error_vector;

Begin
e_error_vector[filter_select] := d_input_vector([filter_select] -
y_output_vector [filter_select];
End;
{--
Procedure sum_error_vector;
Begin
sum_erroxr := 0;

For i:= 0 to (post_data_size - 1) Do
sum_error := sum_error + Sqr(e_error_vector[il) / post_data_size;

Writeln(e_output_file, sum_error);

End;
{

Procedure update_weight_array;
Label Skip_Weight_Update;
Begin

For i := 0 to (filter_size - 1) Do
Begin

If (filter_select - delay + i < 0)
or
(filter_select ~ delay + i > (post_data_size -1))
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Then Goto Skip_Weight_Update; 3
ki
weight_array[filter_select,i] := leakage * weight_arraylfilter, select,i] + 3
2 # gain_mu_vector{filt-r_select] * 3
e_error. vector[filter_sclect] * :
x_input_vector([filter_ select - delay + i); ]
%

It mpa_iflag = 1
Then i
weight_array[filter_select,il := weight_arraylfilter_.select,i] - §
2 * gain_mu_vector{filter_select] * §
p-vector(il; 3
1
N
Skip_Weight_Update: ;
3
End; %
End; b
5
{ - } p
Procedure clear_arrays_vectors; ;
:
Begin k
For i := 0 ¢ 79 Do §
Begin ;
x_input_vectoxr[i] 1z 0 3
d_input_vecter[i] 1= 05 %
y_output_vector [i] := 03 b
e_errcr_vector Li} 1= 03 g
gain_mu_vector([i] iz 0 3
pre_x_input_vector[i) 1= 0; 1
pre_d_input_vector{i] = 0; 3
p.vector[i] = 0; j
bias_weight_vector{il := 03 i
bigs_d_weight_vector{i] := 0; 3
End; §
e

4

For 41 := 0 to 79 Do

Begin
For j := 0 to 20 Do
Begin
avg_weight_azray[i,j] := 0;
weight_axrayl[i, ;) = 0;
End;
End;
End;
{ - -3

Procedure update_p_vectsr;
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Var %
time_index,
tap : Integer;

Label Skip_pre_vector_update, .
mpa_.not_selected; b

Begin
If  (mpa_flag = 0)
or :
(run_countexr > 0)

ki

Aj
z
a2

Then Goto mpa_not_selected;

For i := 0 to (prz_data_size - 1) Do
Begin
For tap := O to (filter_size - 1) Do
Begin

Wedbniy

o e e et

If (tap - delay + i < 0)
or
(tap - delay # i » pre_data_size - 1)

POV T RN

Then Goto Skip._pre_vector_update;

p-vector[tap] := p_vectoxrltap] +
(pre_x_input_vector[tap - delay + i] #*
pre_d_input_vector[i]) /
(number_data_vectors * pre_data_size);

Skip_pre_vector_update:
End;
End;

mpa_not_selected:
End;

{ 3

Procedure {reeze_weights;

Begin
For i := 0 to (vost_data_size - 1) Do
Begin
For j := 0 to (filter_size ~ 1) Do
veight_array[i,j] := avg_weight_array(i,jl;
End;
End;
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{ 3

Procedure do_avg.weight_array;

Label
exit_avg;

Begin
If run_counter < (number_of_runs - 1)
Then goto exit_avg;

if data_pointer = 1
Then Begin
textcolor(yellow+blink);
GotoXY(40,2);
writeln(’Averaging Weights'®);
textcolor(yellow);
End;

For i := 0 to (post.data_size - 1) Do
Begin
For j := 0 to (filter_size - 1) Do

avg_weight_array{i,j] := avg_weight_array[i,jl +
(2.0)*(0.5)/(data_pointer + 1) *
(weight_array[i,j] -
avg_weight_arrayl[i,jl);
End;

Exit_avg:
End;

{ 3

Procedure reset_filter_start;

{Purpose: filter_start will turn the filter on after the data_pointer has
exceed the set value of filter_start. This allows the bias weight
vector to get a jump start on the input data before the filter. This
reduces the noise passed to the filter from the bias weight. After
the filter is started, this routine clears filter_start so the filter
is on continuously.}

Begin
{ilter_start := 0;
End;

{ <K<K LLLLLLLLLLLLLELLLLLLLLLLEODDODDDDIDDIDODDODIDDIDIDIODSD>DID>505>>5>>>}
A EXLLLLLLZLLLLLLLLL L LS Main_Program SEOOOEEOIBBIBLIIIOOIOSOSO>HO>}

Begin
ClrScr;
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clear_arrays_vectors;
test_filter_size;
open_input_disk_files;
open_output_disk_files;

For run_counter := 0 to (number_of_runs - 1) Do
Begin
reset_disk_files;

For data_pointer := 0 to (number_data_vectors - 1) Do
Begin

load_pre_input_vectors;

load_input_vectors;

F
l
initialize_variables;
update_screen;
update_p_vector;
update_bias_weight_vectors;
remove_bias_from_input_vectors;
If data_pointer >= filter_start
Then
For filter_select := 0 to (post_data_size - 1) Do
Begin
update_y_output_vector;
update_e_error_vector;
calculate_new_gain_mu;
update_gain_mu_vector;
update_weight_array;
reset_filter_start;

End;

do_avg_weight_array;
sum_errocr_vectior;

End;

{=======s=======z=z====Freeze Weights and Filters=s==s==sz=zzcz=z}

freeze_weights;
reset_disk_files;
ClrScr;

For data_pointer := 0 to (number_data_vectors - 1) Do
Begin

load_pre_input_vectors;

load_input_vectors;




End.

remove_bias_ - .input_vectors;

For filter_selec. := 0 to (post_data_size - 1) Do
Begin

update_y_output_vector;
End;

update_screen_2;
add_bias_to_y.vector;
write_y_vector_to_disk;

End;

write_weight_array_to.disk;
{print_avg_weight_array;}

close_input_disk_files;
close_output_disk_files;
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